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Abstract

The FX programming language is designed to support the parallel imple-

mentation of applications that perform both symbolic and scientific com-
putations. Unlike previous languages, FX uses an effect system to discover
expression scheduling constraints. The effect system is part of a kinded type
system with three base kinds: types, which describe the value of an expres-
sion; effects, which describe the side-effects that an expression may have;
and regions, which describe the areas of the store in which side-effects may
occur. Types, effects, and regions are collectively called descriptions.

FX expressions can be abstracted over any kind of description. This
permits type, effect, and region polymorphism. Unobservable side-effects
are masked by the effect system; an effect soundness property guarantees
that the effects computed statically by the effect system are a conservative
approximation of the actual side-effects that a given expression may have.

Effect polymorphism and effect masking make the FX effect system sub-

stantially more powerful than previous approaches to side-effect analysis.

Keywords:"

Programmmg Languages, Types, Effects, Regions, Polymorphism, Static
Checking,Optimization; Parallel Programming ' P ,
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Preface

The FX programming language is designed to support the parallel imple-
mentation of applications that perform both symbolic and scientific compu-
tations. Unlike previous languages, FX supports both functional and im-
perative parallel programming by a static checking system based upon the
notion of effects. Just as a type describes what an expression computes, an
effect describe how an expression computes. An effect is a static descrip-
tion of the observable side-effects that an expression may have when it is
evaluated.

When a programmer uses FX, opportunities for parallel evaluation are
automatically identified by the FX effect system. The effect system assigns
an effect to each expression in a program. Since the effects of every FX
expression are statically known, effect information can be used to schedule
a program for parallel evaluation while retaining sequential semantics. If
two expressions do not have interfering effects, then a compiler can schedule
them to run in parallel subject to dataflow constraints.

The effect classifications used by FX include read effects, write effects,
and alloc (for allocate) effects. Each effect is subscripted by the region
of the store to which it applies. Compound effects are built from unions
of simple effects, and thus effects form a lattice. The bottom of the effect
lattice is the effect pure, which is used to describe an expression that has
no effect at all.

The FX effect system uses effect masking to erase unobservable side-
effects from the effect of an expression. Effect masking allows expressions
that have local side-effects to be scheduled to run in parallel with one an-

pO: other. In addition, the same static analysis that is used for effect masking

permits local storage to be stack allocated, thus saving the overhead of dy-
namic garbage collection.

The FX static checking framework is based on a hierarchical kinded type
system which includes kinds, universal polymorphism, higher order types,

vii
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Preface

and recursive types. The static checking system is based upon three kinds of

descriptions: types, which describe the values expressions compute; effects,
which describe the side-effects of expressions; and regions, which describe
where effects occur. An expression may be polymorphic in any of the three

kinds. Thus the type of a subroutine may depend on the effect parameters
passed to it. Effect and region polymorphism permit the effect system to
provide tight effect bounds on higher-order functionals in a natural and
simple manner.

We have found that an effect system is useful to programmers, compiler
writers, and language designers in the following respects:

o An effect system lets the programmer specify the side-effect properties
of program modules in a way that is machine-verifiable. The resulting
effect specifications are a natural extension of the type specifications
found in conventional programming languages. We believe that the

use of effect specifications has the potential to improve the design and
maintenance of imperative programs.

a An effect system lets the compiler identify optimization opportunities
which are hard to detect in a conventional higher-order imperative pro-
gramming language. We have focused our research on three classes of
optimizations: code motion (including eager, lazy, and parallel eval-
uation); common subexpression elimination (including memoization);
and dead code elimination. We believe that the ability to perform

these optimizations effectively in the presence of side-effects represents
a step towards integrating functional and imperative programming for
the purpose of massively parallel programming.6

o An effect system lets the language designer express and enforce side-
effect constraints in the language definition. In FX, for example, the

body of a polymorphic expression must not have any side-effects. This
restriction not only simplifies the type system by making effect specifi-

- cations on polymorphic types unnecessary, but also makes this the first
language known to us that permits an efficient implementation of fully

orthogonal polymorphism, in which any expression can be abstracted

over any type and all polymorphic values are first-class, in the presence
of side-effects.

viii
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Organization of the FX Reference Manual

The FX manual is organized into eight major parts:

" An overview of FX conventions. These conventions include the meta-
notation used throughout the manual, how dynamic and static errors

are documented, and the reserved keywords of FX.

" The FX Primer, a short introduction to the use of FX with examples
(Chapter 1).

" The FX Kernel, which includes essential FX constructs and the FX
type and effect system (Chapter 2). The Kernel forms the core of the
language from the point of view of both the FX application program-

mer and the FX language implementor.

" Standard FX types and operations on refs, booleans, integers, floats,
vectors, lists, oneofs, records, and so forth (Chapter 3).

" FX Syntactic Sugar for frequently used Kernel constructs (Chapter 4).
Sugar forms (such as let) do not add semantic power to the language
because they can be described directly in terms of more primitive Ker-
nel constructs.

* The FX Environment for programming (Chapter 5). The environment
includes I/O facilities, top-level definitions, and facilities for developing
large FX programs.

" The BNF syntax of FX (Appendix A). The syntax describes all of the

* special forms in value, description, and kind expressions.

* The semantics for the FX Kernel (Appendix B). The semantics is used
to prove the soundness of the parallel optimizations which are permit-

ted by the type and effect system.

This report corresponds to FX-87. An FX-87 interpreter written
in Scheme can be obtained by sending an electronic mail request to

giffordQxx. Ics. mit. edu. Subsequent versions of FX will include such ex-
tensions as separate compilation, exception handling, type inference, and
explicit concurrency.

LX
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Preface

The FX-87 programming language was developed by the Programming
Systems Research Group at MIT. In addition to the authors, Mike Blair,
Mark Day, Jonathan Rees and James O'Toole made contributions to the
design of FX-87. James O'Toole designed and documented the facilities for
implicit projection. Kendra Tanacea provided helpful comments on drafts of
this report. The design of FX was strongly influenced by Scheme, especially
in the choice of standard types and operations.

Your comments on this report are welcome.
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Conventions

This chapter presents the conventions that are used throughout this manual
and introduces FX syntactic notation, how dynamic and static errors are
documented, FX syntactic classes, and FX reserved identifiers.

Syntactic Notation

This manual adheres to the following conventions:
FX program text is written in teletype font. Program text is com-

prised of identifiers, literals, and delimiters.
Meta-expressions, which are names for syntactic classes of expressions,

are written in italic font. A programmer may replace any meta-expression
by a compatible FX expression. Meta-expressions are distinguished by their
suffix. For example, meta-variables end with var and meta-expressions end
with ezp.

In the following example specification, if is a reserved identifier and the
ezpi denote any valid FX expression:

Example:

(if ezPo ezpI ep 2)

Certain FX language constructs are specified to take a variable number
of parameters. [ezpl denotes an optional expression. A possibly empty
sequence of n expressions is noted ezp1 ... ezp,. If the name of the upper
bound on subscripts is not used, we write the shorter: ezp1 .... If there is at
least one expression in the sequence (i.e., n > 1), we use ezpl ezp 2 ... ezp,.
We usually denote by ezpi (or any other subscripted ezp) any expression
which belongs to any of these sequences.

When a given FX construct cannot be kinded (for description expres-
sions) or typed (for an ordinary expression) using the standard FXnotations,

xf
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Conventions

it is described in a special format (double-barred page) in which explana-
tions are given on its syntax, kind, type, effect and/or semantics. One or

more examples of its usage are provided.

Static and Dynamic Errors

Static errors are detected by FX when a program is type and effect checked.

All syntax, type, and effect errors are detected statically and reported. The

sentence "x must be y" indicates that "it is a static error if x is not y".
" ~.Dynamic errors may be detected by FX when a program is run. The
9 phrase "a dynamic error is signalled" indicates that FX implementations

must report the corresponding dynamic error and terminate the execution
* 1 of the program. The phrase "it is a dynamic error" indicates that FX im-

plementations do not have to detect or report the corresponding dynamic
error. The meaning of a program that contains an unreported dynamic error

is undefined.

Definitions

Here we describe the basic lexical entities used in the FX programming
'- language:

oAdigit is one of 0 ... 9.

o A letter is one of a ... z or A ... Z.

* The set of extended alphabetic characters must include: *, 1, ,
: ', ?1,:, $, %P,-, .,,I

0 * White space is a blank space, a newline character, a tab character, or
a newpage character.

* A character is a digit, a letter, an extended alphabetic character, +,-,

a white space or backspace character.

* A delimiter is a white space, a left parenthesis or a right parenthesis.

* A token is a sequence of characters that is separated by delimiters.

e. * A literal is either a number, or a token that begins with I or #, or a

sequence of characters enclosed in double quotes ",or an empty set of

parenthesis 0.

lxll
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" A number is a token made of a non empty sequence of digits, possibly
including base information, a decimal point, and a sign. (see Chapter
3).

" An identifier is a token beginning with a letter or extended alphabetic
character and made of a non-empty sequence of letters, digits, extended
alphabetic characters, and the characters + and -. Note that + and -
by themselves are also identifiers.

FX reserves the following identifiers. Reserved identifiers must not be
bound, redefined, or used as tags for records and oneofs.

alloc do oneof read type
and effect or record unit

begin else pairof recordof uniqueof
bool if pdefine record-setl vectorof
compile lambda plambda ref vlambda
cond let* plet* region void
define let plet runion vsubr
delay letrec pletrec select write
dfunc load poly set!
dlambda maxeff proj string

diet* null promise subr
dlet one pure tagcase
dletrec one-set! quote the

Comments in FX are sequences of characters beginning with a ";" and

ending with the end of line on which ";" is located. They are discarded by
FX and treated as a single whitespace.

All
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Chapter 1

The FX Primer

This primer is designed to introduce FX to you by way of a few representative
programs - even before you have read the rest of this manual. We hope that
this primer will give you the flavor of programming in FX. We also hope to
suggest how larger FX programs can be created by composing elementary
FX expressions together.

Getting Started

In order to use FX, start by invoking the FX interpreter. FX will prompt
you with a greeting similar to this one:

FX 1.0 Interpreter of June 30, 1987

FX a>

FX is now ready to listen to you. Once you have typed a complete
expression and pressed carriage-return, FX will evaluate your expression
and output its value. For example:

Fl 1.0 Interpreter of June 30, 1987

FX => 1

1 : int I pure
FX => (+ I (* 2 3))
7 : nt I pure
FX => (exp 1.0)
2.7182818 : float I pure

pil



Ch. 1. The FXPrimer

FX v> (> 1 2)
*f : bool I pure

FX prints three result components for each expression that you type. The
first component is the value of the expression, the component after the':'
is the type of the expression, and the component after the " I " is the effect of
the expression. The type of an expression describes its value, while the effect
of an expression describes its side-effects. Thus, types describe "what" while
effects describe "how". All of the above examples had effect pure, indicating
that no side-effects have been performed by these computations.

The names +, *, exp, and > are simply variables that are bound in the
global environment to primitive subroutines. You can bind new variables to
values with define:

FX a> (define x 2)
x 2 : int I pure

2 • int I pure
FX a> >
<subr> : (subr pure (nt int) bool) I pure

* hIn this example, the (define x 2) form introduces a new variable in
tbe global environment called x that is initially bound to the value 2. By
typing the expression x we confirm that x is bound to the value 2. By typing
the expression > we see that > is bound to a subroutine (which cannot be
printed, hence the <aubr>) that takes two integers as input and returns a
boolean. The type of > includes the effect that > will have when it is applied.
This effect is called the latent effect of the subroutine; the latent effect of >
is pure.

O

Using Regions and EffectsEl Every data structure in FX is in some region. Regions are useful because they
enable FX to perform automatic garbage collection and to evaluate more
expressions in parAlel than would otherwise be feasible. Region constants
are easily recognizable because they always start with a a character. When
you do not specify the region of a data structure, the region 4- is generally
used. Data structures that .re in @- cannot be mutated. You can choose

Z the region of a data structure by using the proj expression to indicate your
region choice. For example:

2
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Ch. 1. The FX Primer

FX -> (cons 1 2)
(1 2) : (pairof int int Q-) I pure

FX => (car (cons 1 2))

1 : int I pure
FX => (define y ((proj cons @green) 1 2))
y (1 2) : (pairof int int Ggreen) I (alloc @green)
FX => (car y)
1 : int ! (read @green)
FX => (set-carl y 2)
#u: unit I (write @green)
FX => (car y)
2 : int I (read egreen)

0 As shown in this example, effects include region specifications. The effect
of allocating and initializing a @green pair is (alloc green), the effect of
reading a green pair is (read @green), and the effect of writing a @green
pair is (write @green). Effects on the region a- can be ignored because
data structures in 4- may not be mutated; we say that data structures in
a- are immutable.

So far we have discussed values, types, regions, and effects. With these
preliminaries out of the way, we can now consider our first example program
- a recursive implementation of the Fibonacci function:

FI -> (define (fib (n int))
(the pure int

(cond ((c= n 0) 0)
n 1) 1)

(else (+ (fib (- n 1)) (fib (- n 2)))))))
fib - <subr> : (subr pure (int) int) I pure
FX => (fib 6)
5 int I pure

The fib subroutine takes a single argument called n of type int. The
the form is a declaration that the body has no side effects - it is pure - and
that fib returns an integer.

The Fibonacci function can also be programmed with an iterative imple-
mentation:

FX u> (define (iter-fib (n int))
(do ((result 0 (+ result result-i))

3



Ch. 1. The FX Primer

(result-i 1 result)
(counter n (- counter 1)))

((<- counter 0) result)))
iter-fib - <subr> : (subr pure (int) int) I pure
FX -> (iter-fib 5)
5 : int ! pure

Each clause of the do expression provides an initial value for a loop
variable and an expression for updating the variable on each loop iteration.
When counter is equal to or less than 0, result is returned.

FX gets a considerable amount of its power from the way that subrou-
tines can be used. In FX, subroutines can be stored in data structures,
passed to other subroutines as arguments, and returned as the results of
subroutines. For example, the following subroutine compose composes two
integer subroutines:

FZ -> (define (compose (f (subr pure (nt) int))
(g (subr pure (int) int)))

(lambda ((x int)) (f (g x))))
compose - <subr> : (subr pure ((subr pure (iUnt) jut)

(subr pure (nt) jnt))

(subr pure (jnt) int))
I pure

F1 -> ((compose fib (lambda ((x int)) (+ x 1))) 4)
5 : int I pure

*Polymorphism Permits Subroutines to Work for Many Types
and Effects

*We can generalize compose so that it can work for subroutines of any type

by passing the input and output type of the subroutines as a special kind of
argument:

FX -> (define coup
(plaubda ((t type))

(lambda ((f (subr pure (t) t))

(g (subr pure (t) t)))

(lambda ((x t)) (f (g x))))))
comp = <subr> : (poly ((t type))

(subr pure ((subr pure (t) t)

4
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Ch. 1. The FX Primer

(subr pure (t) t))
(subr pure (t) t)))

1 pure

This feature of FX is called polymorphism. (The name plambda comes
from "Polymorphic Lambda.") Polymorphism permits an expression to be
abstracted over types, effects, and regions. The subroutine comp can be
used in precisely the same way as compose - the type parameter is supplied
automatically by FX using a mechanism called implicit projection. The
following example shows how comp can be useful on different types of values:

FX -> ((comp fib (lambda ((x int)) (+ x ))) 4)
5 : int I pure
FX -> ((comp not? not?) #t)
St: bool I pure

Lists are Defined with Recursive Types

The range of expressible types is quite large in FX since it is possible to
define recursive types with the dletrec special form. For example, in FX
the listof type is defined in terms of a recursive pairof type. A subroutine
that uses both polymorphism and recusive types is the mapcar subroutine:

FX '> (define mapcar
(plambda ((tl type) (t2 type) (r region) (e effect))

(lambda ((f (subr e (ti) t2))
(input (listof ti r)))

(the (maxeff (alloc r) (read r) e)
(listof t2 r)
(if (null? input)• ()

((proj cons r)
(f (car input))
(napcar f (cdr input)M)))

aapcar =<sinbr>(poly ((ti type) (t2 type) (r region) (e effect))

(dletrec ((#1 (pairof t1 #1 r))
(02 (pairof t2 #2 r))

(subr (maxeff (alloc r) (read r) e)
((subr 9 Wt) t2) 01)[5

e,- r w w w 1.1, 1 eRt~W



Ch. 1. The FX Primer

#2)))
! pure

FX -> (mapcar (lambda ((x int)) (+ x 1)) (list 1 2 3))
(2 3 4) : (dletrec ((#1 (pairof int #1 C-))) #1) 1 pure

Types can be Abbreviated

Because complicated types may be cumbersome to write FX provides a type
,, synonym facility. You can introduce type synonyms in an expression with

the plot construct, as in:

'FX -> (define comp
(plaubda ((t type))

(plet ((func (subr pure (t) t)))
(lambda (Mf func) (g func))

S(lambda ((x t)) (I (g x)))))))
comp - <subr> (poly (t type))

(subr pure ((subr pure Ct) t)
(subr pure Wt 0))
(subr pure (t) t)))

, ! pure

You can also introduce type synonyms at top-level, with the pdef ine top-
level special form:

~FX => (pdefine int-subr (subr pure (int int) int))

int-subr - (subr pure (int int) int) :: type

After a pdef ine form is evaluated, the FX interpreter prints out the
name of the variable defined, the description to which it is bound, and after~~the : ,the kind of the variable. Kinds are the "types" of descriptions.

You can also define recursive types at topevel; for instance, you could

define the abstract syntax of a simple expression language as:

FX -> (pdefine expr (oneof ((constant int)

(identifier symbol)~(add (pairof expr expr Q-)))
-))

expr- (dletrec ((#1 (oneof ((constant int)

(identifier symbol)

W6
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(add (pairof #1 #1 C-)))
6-)))

#1) :: type

Here, oneof is a standard FX type constructor. The idea is that a value
of type expr can be either an integer constant (in which case it will be
"tagged" by constant), an identifier represented by a symbol (yet another
standard FX type) or an addition of two other expressions.

A Simple Evaluator

In order to define an evaluator (i.e., a function which maps expr values
to integers) for our new tiny language, we need one more type definition,
namely for the store in which the values of identifiers are kept. Here it is:

FX => (pdefine store (subr pure (symbol) int))
'. store - (subr pure (symbol) int) :: type

A function of this type will map each identifier (recall that they are in
fact implemented by symbols) to its integer value.

The definition of our evaluation function eval is now easy. It take two
arguments: an expression e and a store a in which every identifier used in e
has a value. We will suppose that there are no unbound identifiers.

FX -> (define (eval (e expr) (a store))
(the pure int

(tagcase e
(constant e)

(identifier (a e))
(add (+ (eval (car e) a)

oa (eval (cdr e) s))))))
eval - <subr>

(dletrec ((#1 (oneof ((constant int)
(identifier symbol)
(add (pairof #1 #1 C-)))

Q-)))
(subr pure

(#1 (subr pure (symbol) int))
int))

pure

7
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The eval function is a pure subroutine which maps an expr, which is
represented by the complicated recursive type #1, and a store to a valte of

type int.
The tagcase special form is used to dispatch on a oneof value according

to its tag. Inside each clause of such a form, the variable e denotes the
contents of the oneof value; for instance, inside the identifier clause, e

represents the symbol corresponding to the identifier value. This is why
we apply the store s to e to get its integer value. It is also interesting to
note that the recursive calls to eval used to compute the addends of an add
expression have no side-effects (the eval function is pure). Therefore, the

:2 FX compiler may schedule them to run in parallel safely.
Let us check that our definition works.

FX => (define x-plus-1 (one expr add

(cons (one expr identifier 'x)

(one expr constant 1))))

x-plus-1 - (add (identifier . x) constant . 1)
(dletrec ((#1 (oneof ((constant int)

(I4entifier symbol)
(L.. (pairof #1 #i On)))

-' #1)

pure

FX -> (eval x-plus-1 (lambda ((a symbol))

(if (eq? s 'x) 3 0)))
4 : int ! pure

We first define the expression x-plus-1 corresponding to the addition

of the identifier 'x (symbol literals are distinguished by the use of a quote
_ character) and the constant 1; one is the special form defined in FX to

construct an value whose type is a oneof. The real test is then to evaluate
x-plus-1 in a store which binds 'x to the value 3; the result is, of course,
4.

0-, Effects can be Masked

Effects that are not observable outside of an expression can be masked by the
effect system. For example, an assignment to a formal subroutine parameter

may not be reported as part of the latent effect of the subroutine if it cannot
be observed by the caller:

8
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FX -> (define (f (x int *local))
(set! x (+ x 1))
(* x x))

F - <subr> : (subr pure (int) int) I pure
FX -> (f 10)
121 : int ! pure

Similarly, a subroutine that constructs a circular list has only an alloc
effect, even though it mutates the list after allocating it, because this muta-
tion cannot be observed by the caller:

FX -> (define circular-list

(plambda ((r region))
(plambda ((t type))
(lambda ((Mnit t))

(let (Cl ((proj list r) int)))
(set-cdrl 1 1)
1)))))

circular-list = <subr>
(poly ((r region))

(poly ((t type))
(dletrec ((#1 (pairof t #1 r)))

(subr (alloc r) (t) #1))))
! pure

fx> (lambda C) ((proj circular-list @green) 5))
<subr> : (dletrec ((#1 (pairof int #1 @green)))

(subr (alloc @green) () #1))
I pure

fx> (lambda C) (circular-list 5))
<subr> (dletrec ((#1 (pairof int #1 6-)))

(subr pure C) #1))
! pure

As this example shows, the effect of creating a @green circular list is
(alloc green), and the effect of creating an immutable circular list is
pure. Effect masking is more thoroughly described in Section 2.3.

9



Ch. 1. The FX Primer

Thiz ends our short primer on FX. We hope that you have a sense of
how the FX language can be used. The best way to learn more about FX
is to try writing a few programs. The rest of this manual contains all of the
information that you need to write programs on your own.

Have fun, and good effects!

1.
4.

J
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Chapter 2

The FX Kernel

The FX Kernel is a simple programming language that is the basis of the
FX programming language. All of the constructs in the FX language can
be directly explained by rewriting them into the simpler FX Kernel lan-
guage. Thus, the FX Kernel forms the core of the FX language from the
point of view of both the FX application programmer and the FX language
implementor.

The FX Kernel has three language levels each with its own set of expres-
sions: value expressions, description expressions and kind expressions. In
the simplest terms, programs are value (or ordinary) expressions, types are
descriptions, and kinds are the "types of types".

" Value expressions form the lowest level of the language. Programs and
literals (e.g. #t) are examples of value expressions.

* Descriptions form the second level of the language. There are four
kinds of descriptions: region, effect, type descriptions and description
functions. As the name suggests, descriptions describe value expres-
sions - in particular, every legal value expression has both a type and
an effect description. Region descriptions are used as components of
effect descriptions.

* Kinds form the third and highest level of the language. Kinds are the
0,* "types" of descriptions, and every legal description expression has a

kind.

FX is a block-structured, lexically-scoped language, like Scheme or Com-
monLISP. Whenever a variable is used, it refers to the inner-most lexical

JUL



Ch. 2. The FX Kernel

binding of that variable. A variable may stand for a description or a value,
but may not be bound simultaneously to both a description and a value.

2.1 Kind Expressions

2.1.1 Meta-notation for Kinds

Kind expressions have the meta-notation Keep. A kind expression is either
a kind constant or a kind constructor expression.

To express the idea that a description expression has some kind, we use
a double colon.

Deep :: Keep

should be read: "The description expression Dezp has kind Keep." We will
at times avail ourselves of the shorthand notation

Dezp1,...,Dezp,, :: Keep

to mean that each of the Dexpi (1 _ i < n) is of kind Keep.

2.1.2 Kind Constants

FX has three kind constants:

" region is the kind of a description which describes an area of memory
(e.g. I- :: region).

" effect is the kind of a description which describes the side-effects of
a computation (e.g. pure :: effect).

" type is the kind of a description which describes a set of values (e.g.
bool :: type).

2.1.3 Kind Constructors

dfunc expressions provide a way to build new kinds; dfunc is a kind con-
structor.

(df uuc (Kezp... Kexp,,) Keep)

12
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2.2. Description Expressions

Kinds built with dfunc are the kinds of description functions which map
descriptions to descriptions. A description function which returns a type is
called a type constructor because it provides a way to build a new type (e.g.,
ref :: (dfunc (type region) type)). Effect and region constructors arise
in the same way.

One creates description functions with the dlambda description special
form described on page 23. One uses description functions by applying them
as described on page 24.

2.2 Description Expressions

Description expressions are used to describe FX values and program expres-
sions. Every legal description expression has a kind (e.g. the description
expression (ref bool 6-) has kind type.)

2.2.1 Meta-notation for Descriptions

Description variables have the meta-notation d, and description expressions
have the meta-notation Dezp.

2.2.2 Variables

The programmer may use any unreserved identifier as a description variable.
(See page xiii for a list of reserved identifiers.)

A description variable denotes the description it is bound to in the sur-
rounding bindings.

0 2.2.3 Regions

A region represents a set of locations in the store. The programmer may
think of a region as an area of memory (though a region may not actually
be a contiguous set of memory locations). The compiler may use regions to
determine whether two program expressions interfere, i.e. whether they may
cause and/or observe changes to common data. Since one cannot determine
interference patterns exactly for every data value without running the pro-
gram, the FX compiler makes the conservative assumption that expressions
with side effects (see below) in the same region do interfere.

13
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Ch. 2. The FX Kernel

Meta-notatlon for Regions

The meta-notation for description variables of kind region is r. Region
expressions have the meta-notation Rezp. A region expression is a region
variable, a region constant, or a region constructor expression.

Region Constants

All region constants begin with the special character a (read "at"). There
is one special region called the immutable region whose name is a- (read
"at-equal" or "the immutable region"). This region has the property that
values in it can never be changed. There is an infinite supply of other region
constants which are mutable; their names are of the form 6identifier. All

*, region constants denote disjoint sets of locations.

Region Constructors

The only operation on regions is runion.

41
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runion region expression

(runion Rezp1 ReXp 2 ... )

Semantics: The runion operation forms the set union over all the regions
denoted by the Rezp,; the result is a region. The runion of just one region
is equivalent to that region.

runion expressions are flattened, i.e. inner runion expressions are re-
placed with the regions of the set to which they correspond. Duplicates are
ignored and order is not significant. For example, (runion Ca (runion @a
eb)) is equivalent to (runion *b a).

Kind Information: The kind of an runion expresssion is region.

0 Example:

;; Composing "colored" regions.

(runion @blue fred @yellow)

sz
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Ch. 2. The FX Kernel

2.2.4 Effects

The effect of an expression is a static description of the observable store
operations which may be performed during the evaluation of the expression.
Store operations performed by an expression are observable when they are
performed on store locations that are accessible outside of the scope of the
expression.

FX uses effects to discover expression scheduling constraints. FX will
constrain two expressions to be executed serially only if the expressions in-
terfere with one another. Two program expressions interfere if one expression
writes a region of the store that the other expression reads or writes.

FX also uses the property that expressions with the pure effect are ref-
erentially transparent. Informally speaking, an expression is referentially
transparent if two occurances of the expression in the same scope can be
replaced by a single instance of the expression. Thus, when an expression is
referentially transparent both static common subexpression elimination and
dynamic memoization can be applied to it.

Meta-notation for Effects

Effect variables have the meta-notation e, and effect expressions have the
meta-notation Eezp. An effect expression is an effect variable, a simple
effect, or an effect constructor expression.

Sinple Effects

FX describta effects in terms of three sorts of operations on the store:

" One may allocate and initialize a location in the store, e.g. by making
a binding for a variable in some region.

" One may read a location in the store, e.g. by referencing a variable in
some region.

* One may write a location in the store, e.g. by assigning to a variable
in some region.

The corresponding effects on a region Rezp are written:

(alloc Rezp)
(read Reip)

(write Rezp)

~ -. 16



2.2. Description Expressions

An expression which has no effect or dependence on the store is said to have
effect pure.

Recall that the special region a- is immutable. Therefore, it is a static
effect error for an expresion to have effect (write Cs). Since no value in the

immutable region may ever be changed, the operations of allocating in and
reading from @- cannot be observed. Thus, (alloc C-) and (read a-) are
both equivalent to pure.

Effect Constructors

The only operation on effects is maxeff.

'p
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m (axefe effct expression

Semantics: The maxeff operation can be thought of as constructing the
set or combination of all effects corresponding to the effect expressions sup-
plied as arguments; the result is an effect. The maxeff of just one effect is
equivalent to that effect.

maxeff expressions are flattened in the same way as runion expres-
sions; inner maxeff expressions are replaced with the effects from the set

4, to which they correspond. Duplicates are ignored and order is not signifi-
S. *cant. The simpler expression pure is an abbreviation for the empty set of

effects (maxeff).
*- The simple effects have a distributive property over runion. For instance,

(alloc (runion Ca Qb)) can be rewritten (maxelf (alloc Ca) (alloc 4b)).
We will always use this latter version.

Kind Information: The kind of a maxeff expression is ef ect.

Example:

;; The most complex effect on 01oo.

(maxeff (alloc Ofoo) (read @too) (write *foo))

0.



2.2. Description Expressions

2.2.5 Types

In FX, a type denotes a collection of values. A value has some particular
type if it is in the collection of values denoted by the type.

Meta-notation for Types

Type variables have the meta-notation t. Type expressions have the meta-
notation Texp. A type expression is a type variable, a type constant, or a
type constructor expression.

Type Constants

The builtin types are:

bool the type containing the two boolean values #t and #f for true and
fase. The type of the predicate of a conditional, i.e. if, is bool.

unit the type containing the single value lu. The unit type is useful as the
return type of subroutines which are called solely for their side-effects
and which do not compute a useful return value.

Type Constructors

There are three builtin ways to build new types from old ones. They are
described on the following pages: subr, poly and ref.

Ad



subr type expression

(subr Eexp (Texpi...) Tezp)

Semantics: This is the type of a subroutine created by the lambda expres-
sion.

Eezp is the latent effect of the subroutine; that is, upon application, eval-
uation of the subroutine will have an effect of Eezp. The Tezp are the types
of the parameters. Tezp is the type of the value which the subroutine will
return. (See the descriptions of lambda on page 34 and ordinary application
on page 36.)

Kind Information: The kind of a subr expression is type.

Example:

;; The type of the identity function on booleans.

(subr pure (bool) bool)

t'"
V
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poly type expression

(poly ((di Kexpl)...) Tezp)

The d, must all be distinct.

Semantics: This is the type of a polymorphic value created by the plambda
expression.

The description variables d, are bound variables; their kinds are given
by the Kezpi. When a polymorphic value is projected (either explicitly or
implicitly), the description arguments are bound to the d, and the result of
the projection is a value whose type is Tezp with the d, substituted by the
corresponding description arguments. (See the descriptions of the plambda
expression on page 39, projection on page 40 and implicit projection on page
41.)

Kind Information: The kind of a poly expression is type.

Example:

The type of the polynorphic identity function.

(poly ((t type))

%q%

" (subr pure (t) t))
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Ch. 2. The FX Kernel

The type of a value which is a reference to a location in region Rexp
containing a value of type Tezp is:

(ref Tezp Rezp) :: type

The kind of ref is:

ref :: (dfunc (type region) type)

2.2.6 General Description Expressions

There are three description expressions which provide general ways of ma-
nipulating descriptions (of any kind). These expressions are used to define
and apply description functions, and to build recursive descriptions. These
expressions are described on the following pages: dlambda, Description Ap-

. • plication and dietrec.

0.4,
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dlambda description expression

(dlambda ((d Kexpl). .. (4 Kezp)) DezPbody)

The d, must all be distinct.

Semantics: Just as lambda provides a means of abstracting program code
over ordinary variables to make subroutines, the dlambda description ex-
pression provides a means of abstracting a description expression over de-
scription variables to make description functions. (See also the definition of
description application on page 24.)

Kind Information: The kind of a description function created with
dlambda, assuming that the kind of DezPbod,, is Kezpbodt, is:

(dfunc (Kexp 1... ) KezPbody)

Examples:

An effect constructor which is abstracted over a region.

(dlambda ((r region))
(maxeff (alloc r) (read r) (write r)))

;; A constructor of types of subroutines which have

,; every possible side effect on some region. The caller

;; should specify the argument type (there is only one

;; argument) and the return type of the subroutine.

(dlambda ((arg-type type) (ret-type type) (r region))

(subr (maxeff (alloc r) (read r) (write r))

(arg-type)
ret-type))

23
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Description Application description expression

i ~ ~(Dexpf.m Dezpl..••

Semantics: Dezp 1 ,. must evaluate to a description function (see the de-
scription of dlambda on page 23). In particular, the kind of Dezpf,. must
be (dfunc (Kezpl...) Kezpbod). The Dezpi are the actual parameters, or
arguments, to the function. Each argument expression must be of the proper
kind; i.e. Dezp, must be of kind Kezpi. The number of actual parameters
must be the same as the number of formal parameters. When the description
function is applied to its arguments, the description expression which is its
body is returned with the arguments substituted for the formal parameters.

Kind Information: The kind of a description application is Kezpd,, the
kind of the body of the dlambda form which defines the lescription function.

! Examples:

A synonym for the type of the identity function on booleans.

((dlambda (M type))
:(subr pure M M

bool)

A complicated effect.

((dlambda ((r region))

(maxeff (alloc r) (read r) (write r)))
(runion @green Oblue red *purple))

2
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dletrec description expression

(dietrec ((di Dezpl) ... ) Dezpb~dy)

The d, must all be distinct.

Semantics: First, all of the d, are made available. Then, the Dezpi are
successively evaluated and bound to the corresponding d,. This order is im-
portant because it allows any of the Dezpi to refer to some 4, thus providing
for mutual recursion. This process is subject to the following restriction: all
description variables that can be recursively reached, in the graph of de-
scription variable usage, from an expression Dezpi must be defined before
the processing of the binding for d,, unless their kinds are type. Typically,
the Dezpi are recursive type descriptions and so there is no problem. It
is a static type error if any of the d is defined as itself, either directly or
indirectly.

The value of the dietrec expression is the body, DezPbody, evaluated
with the (possibly recursive) definitions of the d, substituted for the d,.

NKina Information: The kind of a dietrec description special form is thekind of DezpbodV.

Example:

;; Example of list.

(dletrec ((list-bool (pairof bool list-bool Cbool)))
list-bool)

1 25
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2.2.7 Description Inclusion

Some description expressions are more constrained versions of others. A
more constrained description is said to be included in (a subdescription of
the less constrained one. For instance, a region is a set of memory locations.
If every location in one region is also in another, then the first is a subregion
of the second, and is said to be included in the second. We can also define
subeffects and subtypes. Two description expressions are interconvertible if
and only if each is included in the other; two description expressions that
are interconvertible denote the same description.

One description expression can only be a subdescription of another if
Nboth are of the same kind: a type cannot be included in a region since types
" and regions describe different things.
-The least upper bound of a set of descriptions of the same kind is the

least description of that kind that includes all the members of the set. The
runion operation computes the least upper bound of a set of regions, and
maxeff computes the least upper bound of a set of effects. No least upper
bound operation is provided for types because certain sets of types do not
have a least upper bound.

The maximum description of a set of descriptions (all of the same kind)
is the element of the set that includes all the members of the set. Since not
every set of descriptions has a maximum, FX provides no way to express the
maximum of a set of descriptions.

Region Inclusion

Recall that runion expressions are canonicalized (by flattening) and that
the runion of one region is equivalent to this region.

The region denoted by Rezpl is a subregion of the region denoted by
ReXp2 iff (if and only if) the set of regions in Rezpl is a subset of the set of
regions in ReXp 2.

Effect Inclusion

O@'s Recall that maxeff expressions are canonicalized (by flattening) and that
the maxeff of one effect is equivalent to this effect.

., -1,These rules depend upon the rules for region inclusion:

e pure is a subeffect of any other effect and is a shorthand for (maxeff).

26



2.2. Description Expressions

* (alloc Rezpl) is included in (alloc Rezp2 ) iff Rezpl is included in
Rezp2 . The analogous rules hold for read and write.

* (maxef Eexpl,... Eezpj) is included in (maxeff Eezp2 l... Eezp2 m) iff
every Eezpli is contained in some EeXp2j.

Type Inclusion

There is no inclusion between the base types bool and unit. So we need
only describe the way inclusion works with respect to the type constructors:

* Suppose

t -(subr Eezpl(Tezp11 ... Tezpl.) Tezplrt.)

t2 (subr Eezp2( Tezp2j ... TeZp 2 ) TeZp 2r7t)

tl is a subtype of t2 iff

1. m = n

2. Eezpl is a subeffect of Eezp2 ,

3. Tezp2i is a subtype of Tezpli (for 1 < i < n), and

4. Teplrt is a subtype of Tezp 2rtn.

Notice that if tl is a subtype of t 2 , then the types of the arguments of

t1 are supertypes of the types of the arguments of t2.

Rationale: Imagine a program being passed a subroutine as an argu-
ment. If you pass such a program a subroutine whose type is a subtype
of the expected one, the program should still be able to work properly
since the program could handle the larger type. The effect cannot be
larger than originally expected; the program should still be able to
pass the subroutine at least the same argument types as expected (one
may extend the set of arguments accepted but may not restrict it); and
the subroutine should return a subtype of the return type expected so
that the calling program can handle the result.

* Suppose

tj - (poly ((djjKep,1) ... (dlnKeXPln)) TCXpl)

t2 (poly ((d211Kezp 2 1) ... (d 2 mKezp 2m))Tezp 2)

27
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Ch. 2. The FX Kernel

t1 can only be a subtype of t2 if n = m. The particular names chosen
for formal parameters do not matter, so we can pick new unused names
dj... 4' and substitute d,' for d1i in Tezpl and for d2i in Tezp 2 . This
process of renaming bound variables with unused names is called alpha-
conversion.

Then, tj is a subtype of t2 iff

1. Kezp1, = Kezp2i (for I < i < n) and

2. Tezp1 is a subtype of Tezp2.

* Suppose

(ref TexpRezp)

t2 = (ref Tezp 2Rezp2)

ti is a subtype of t2 iff either

1. Rezp1 is a subregion of Rezp2 and Tezpl is interconvertible with
Tezp2 , or

V. 2. Rezp 1 = Rezp 2 = 0- and Tezpl is a subtype of Tezxp.

Rationale: Consider a subroutine which expects an argument of some
reference type. If the subroutine expects the reference to be in a muta-
ble region, then it is perfectly reasonable for the subroutine to write to
the location denoted by the reference. Now if we pass this subroutine a
reference to a value of some subtype of the expected type, the subrou-
tine could mutate the reference so that it refers to a value of a larger
type (namely the type specified inside the expected reference type).
But this would be a type error! Therefore, we require the type parts

Pow- of mutable references to be interconvertible in the subtyping rules.

The assignment problem cannot arise if the reference is located in the

immutable region Q-; the natural subtyping rule applies here.

General Description Inclusion

Notice that the following inclusion rules are symmetric. That is if one de-
scription function or description application is included in another, then the
two are, in fact, interconvertible.

28
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* Suppose

f _=(diambda ((d, Kezp 1) ... (4. Kexp.)) (Dczp d, ... .4)

Then f is interconvertible with Dezp iff none of the d, occurs unbound
in Dexp. This rule is called eta-conversion.

a Suppose we have the two description functions

fi (dlanbda ((dii Kexpii) ... (dl,, Kezp,j) Dexpb~di)

f2 (dlaabda ((42 1 KezP2 1) . .. (d2 ,. Kezp 2 ..)) DcXpb~d1Y2 )

fi is included in 12 iff

1. n = m

2. Kezpli = Kezp2, (for 1 5 i < n), and

3. Dexpb0 d,1 is interconvertible with Dezpbod.2 after alpha-conversion.
(Alpha-conversion is defined on page 28.)

*Suppose we have the two description applications

d, (Dexpl, DeXP12 . .. Dexp1 ,.)

d2 (Dez-P21 DeXP22 ... Dezp2m)

d, is included in d2 iff

1. n = m and

2. Dexpl, is interconvertible to DeXP2i (for 1 < i .< n).

2.3 Value Expressions

Value expressions are the bottom of our language hierarchy; this is where
the actual computation gets done.

29
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2.3..1 Meta-notation for Value Expressions

Ordinary variables (variables denoting actual computational values rather
than descriptions) have the meta-notation vat. Ordinary expressions, or
value expressions, have the meta-notation ezp. A value expression is an
ordinary variable, a builtin literal or a compound expression.

We often want to express the fact that a value expression or a set of value
expressions has some type. (Just as we wanted to express that a description
expression had a kind. See page 12.)

exp : Tezp

ePi,... ,ezpn : Tezp

This notation means that ezp has type Texp or, in the second case, that each
ezpi is of type Tezp.

We also want to express the fact that a value expression or a set of value
expressions has some effect.

ep I Eezp
e...,...,ezp. I Eezp

This notation means that eqp has effect Rezp or, in the second case, that
each expi has effect Eezp.

2.3..2 Effect Masking

The effect of a value expression derives from operations that the expression
performs on the store: i.e. allocating, reading, and writing. But even if a

*4. value expression performs certain operations on the store, the compiler may
4, be able to prove that those operations cannot interfere with other expres-

sions. If this is the case, then the effect system will mask effects which derive
* from those operations. For example, an assignment to a formal subroutine

parameter need not be reported as part of the latent effect of the subroutine
since it alters a part of the store known only to an invocation of the sub-

r.A routine and thus cannot interfere with expressions outside of the subroutine.
The rule for effect masking is:

-4. If a value expression has effects on some region r, and if r does not
appear in the type of any free ordinary variables in the expres-

4,. ~sion, then any read or write effect on r is masked; furthermore,
if r does not appear in the type of the whole expression, then
any alloc effect on r is also masked.
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2.3. Value Expressions

A variable is free in a value expression if it appears in but is not bound
in the expression. See Appendix B for a formal definition of free variables.

2.3.1 Builtin Literals

The builtin constants are #t for the boolean value true, #f for the boolean
value false, and fu for the single value of type unit (signifying "nothing" or
"done").

As expressions, they evaluate to themselves and have a pure effect.

2.3.2 Variables

The programmer may use any unreserved identifier as a variable. (See page
xiii for a list of reserved identifiers.) When a variable is introduced in a
letrec or lambda expression, the programmer may specify that the value
corresponding to the variable will be in some region. If no region is specified,
the value is assumed to be in the region 4=. If a variable is in region a,
then the value of that variable may not be changed, i.e. may not be the first
argument to a set! expression.

A variable evaluates to the value it denotes and has a read effect on the
region where it is located, which reduces to pure if the region is e=.

2.3.3 Compound Expressions

The following pages document the compound expressions (or special forms)
defined by the FX kernel. Each compound expression performs some compu-
tation and returns a value. Hence, these expressions are called value expres-
sions: begin, the, lambda, Application, letrec, plambda, proj, Implicit
Projection, plet, pletrec, if and set!.

31
..

5,,%

Zh ' .' 7,'- ?,, >. '. ';..'? -. ','>.>?..'>?.'.."7.. •.Q ?,:.'>?, ? ",, ' , ' ,"e "



begin value expression

(begin ezpl ezp 2 ... exp.)

Semantics: The expressions in a begin expression are evaluated in order,
left to right. The value of the begin expression is the value of the last
expression, ezp,n.

Type Information: The type of a begin expression is the type of the last
expression, ezp,.

Effect Information: The effect of a begin expression is computed by per-
forming effect masking on the maxef f of the effects of the expressions in the
sequence, the expi.

Example:

;; Call foo and then bar (which probably have
;; side-effects). Return the value returned by bar.

(begin (foo)
(bar))

:4 32
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the value expression

(the [Eezp] Tezp ezp)

the expressions provides a way to declare the type or, possibly, the effect
of some value expression.

the expressions are useful as a form of documentation or as a means
of coercing ezp to a higher effect and/or to a supertype of its actual type.
One might make use of this feature to prevent code from depending on the
current return value of a stub subroutine, i.e. the can be used to assert
that the subroutine has a particular return type and effect which is more

' . complicated than the real type and effect. (the is not a type loophole.)

Semantics: The value of a the expression is the value exp. exp must have
a type which is a subtype of Texp and an effect less than or equal to Eezp
(if Eezp is given).

Type Information: The type of a the expression is Tezp.

Effect Information: The effect of a the expression is Eexp if it is supplied.
Otherwise, it is the effect of ezp.

Example:

;; Simulates a write effect on *foo.

(the (write Gfoo) int 0)
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lambda value expression

(lambda ((var, Terp, [Rezpl])... (varn, Tezpn [Rezp.]))
ezpI eP 2..., eZpmt)

A• The body of the lambda expression, expl eZP2... 5mPm, is treated as

though (begin exp, ezp 2 .. , e Zp,) is written.
The vari must all be distinct.

Semantics: lambda provides a way of abstracting program expressions over
ordinary variables to make a subroutine value or closure which is the value
of the lambda expression. The subroutine takes n arguments and, when
applied to n arguments each of the proper type, i.e. the type of argument
i is a subtype of Tezp,, returns the value of its body evaluated with the

* @formal parameters bound to the argument values. If no region is specified
for a formal parameter, then @- is assumed, and the body of the subroutine
must not contain any assignments to that formal. If a region is specified
for a formal, then a new location in that region is allocated and given the
argument as its value; the formal is then bound to this location. Assignments
to such formals are allowed, provided the region is not Q=.

FX uses "call-by-sharing" semantics: a set I on a formal parameter only
changes the binding of the formal and does not change variable bindings in
the caller's environment.

Type Information: If the type of ezpm is Texpb0d., then the type of the
subroutine value created is:

(subr Eezp (Tep 1 Texp2 .. . T ezp) TezPbody).

where Eezp is the latent effect of the subroutine. Eezp is computed by
performing effect masking on the maxeff of (alloc Rezp,) and the effects of
the expi.

Effect Information: The effect of a lambda expression is pure, i.e. creat-

determining the effect of an application involving the subroutine value.

.34
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lambda (continued) value expression

Examples:

;A nullary subroutine which returns the value of x.

(lambda 0 x)

;The "apply-twice" functional on booleans.

(lambda ((g (subr pure (bool) bool))
(x bool))

(g (g x)))
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"4 Application value expression

(ezp ezp1 ... ezp,,)

Semantics: The expressions ezp and ezpi are evaluated sequentially, from
left to right. If ezp is polymorphic, then implicit projection is used to obtain
a subroutine value (see page 41). The ezpi are the actual parameters, or
arguments, to the subroutine. The formal parameters of the subroutine are
allocated and bound to the argument values, and the body of the subroutine

% -is then evaluated in the resulting environment. The value of the application
expression is the result of the evaluation of the subroutine body.

Type Information: ezp must have type (subr Eexp (Tezpl... Tezpn)
Tezp,,t). The number of actual and formal parameters must be the same.
The type of each ezpi must be a subtype of Tezpi.

The type of the application expression is the return type, Texp,,T, of the
subroutine.

Effect Information: The effect of the application expression is computed
by performing effect masking on the maxeff of the latent effect of the sub-
routine, Eexp, and the effects of ezp and the ezp.

Examples:

A synonym for Of.

(not? #t)

S...,

... and another for #t.

0 (and? #t (not? #f))

%"%
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letrec value expression

(letrec ((var ezp [Rexp])...) eZplb ezP2b...)

The body of the letrec expression, eXPlb ezp 2b ... , is treated as though
(begin explb ezP2b., .) is written.

The vari must all be distinct.
The expression to which vari is bound must be either

" a (possibly polymorphic) syntactic subroutine, i.e., a (possibly empty)
nest of plambda forms followed by a subroutine form. If the subroutine
is recursive, its body must be of the form (the Eezpi Tezp ezp).

" a non-recursive, non-subroutine value expression.

A the expression is necessary since it is not possible, in general, to de-
* termine the types and effects of arbitrary recursive expressions. The pro-

grammer must supply them.

Semantics: First, all of the vari are allocated, each in Rezp (or 4- if un-
specified). Then, the ezp, are successively evaluated and bound to the cor-
responding vary. This order is important because it allows any of the ezpi to
refer to some vari, thus providing for mutual recursion. This process is sub-
ject the following restriction: all variables that can be recursively reached, in
the graph of variable usage, from an expression ezpi which is not a (possibly
polymorphic) syntactic subroutine, must be defined before the processing
of the binding for vari. Since evaluation of a (possibly polymorphic) syn-
tactic subroutine does not imply the evaluation of the body of the lambda

4expression, this restriction does not apply to the bindings involving such
subroutines. Typically, the expi are lambda expressions and therefore no
problem exists.

After all the bindings are done, the body of the letrec expression is
* evaluated in the environment with these additional bindings.
* A subroutine is tail-recursive if all of the values returned from recursive

calls are themselves returned without further crmputation. FX guarantees
that a properly tail-recursive subroutine will be translated to an iteration.

-Since do loops can be implemented with recursive subroutine calls which the
compiler recognizes as iterative, the FX kernel need not have any separate

*looping expressions.

Type Information: The type of vari is the type of exp,. The type of the
letrec expression is the type of its body.
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letrec (continued) value expression

Effect Information: The effect of a letrec expression is computed by
performing effect masking on the naxef I of (alloc Rexpi) and the effects of
the ezpi and the ezpi1.

Example:

*The traditional factorial program.

(letrec ((act (lambda ((x int))

(the pure int
(it (x 0) 1

x (fact x- 1))))

(fact 10))
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plambda value expression

(plaubda ((d, Kexpl)...) ezp)

The d, must all be distinct.

Semantics: Just as lambda provides a means of abstracting expressions
over ordinary variables, plaubda provides a means of abstracting expressions
over description variables. The kind of these variables must be type, region,
effect or any df unc expression whose eventual kind is type.

The evaluation of plaubda expression yields a polymorphic value that
takes n arguments and, when projected onto n descriptions each of the proper
kind, i.e. argument i is of kind Kezp,, returns the value of ezp evaluated
with the formal parameters bound to the argument descriptions. (See the
description of the proj expression on page 40 and the description of implicit
projection on page 41.)

.The body of a plambda expression, ezp, must be a pure expression.
Because of this restriction, the body of a plambda expression can be eval-
uated. when the plambda expression is evaluated rather than each time it
is projected. Every FX implementation guarantees that projection has no
run-time cost.

Type Information: Assuming that the type of ezp is Tezp, the type of a

polymorphic value defined as above is (poly ((di Kezpl)...) Tezp).

Effect Information: The effect of a plambda expression is pure.

Example:

;; The polymorphic identity function.

(plambda ((t type))
(lambda ((x t)) x))

... 3
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proj value expression

4$(proj ezp Dezpl...)

Semantics: ezp must evaluate to a polymorphic value, as generated by
plambda. The Dezp, are the actual parameters (or arguments) for the pro-
jection. The actuals are bound to the formal parameters specified in the
definition of the polymorphic value. The number of actuals and the number
of formals must be the same. Each Dezp, must be of the kind specified for
the corresponding formal in the polymorphic value's definition. The body

,01 of the polymorphic value is evaluated with the formal parameters replaced
by the actual parameters.

There is an important restriction on the way a polymorphic expression
may be projected onto different arguments of kind region and effect: all
the mutable region arguments must be mutually disjoint and must not in-
tersect with free mutable region variables or constants used inside the type
of the body of the polymorphic expression. This rule is called the region
anti-aliasing rule. (Region descriptions which intersect are said to alias.)

Polymorphic subroutine values in the operator position of an application
expression may be implicitly projected in most cases. (See page 41.)

- Type Information: The type of a projection of a polymorphic value of
type (poly ((di Kexpl )...) Texp) is Tezp with all occurrences of the d-

4 replaced by their corresponding actual parameters.

Effect Information: The effect of a proj expression is pure.

Example:

;; Use the polymorphic identity function to get
* ;; a boolean version.

(proj (plambda (Mt type))
(lambda ((x t)) x))

bool)

40
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Implicit Projection value expression

a...'..1..•(cap ... )

Semantics: ep must evaluate to a polymorphic value, as generated by
plambda. The polymorphic value is projected onto appropriate description
values to produce a subroutine value, which is then applied to the ep,. The
projection and application are performed as described in the documentation
for proj (page 40) and application (page 36).

The description values used as arguments to the projection are chosen so
that the type of each of the epi are subtypes of the types of the correspond-
ing formal parameters of the resulting subroutine. An implicit projection
is possible if the descriptions required as projection arguments are specified
completely by the types of the actual parameters. If the types of the for-
mal parameters do not utilize the maxeff or runion constructors, then the
requisite projection arguments are specified completely, and will be used.

Projection arguments of kind region which are not otherwise implicitly
specified by the type of the actual parameters are given the current value of
the special description variable default-region. This variable is initially
bound to the value a-, but may be rebound by the programmer using plet
pletrec, or plambda.

., ,

Y, Type Information: The type of an implicit projection and application of

a polymorphic subroutine is the return type of the subroutine with all oc-
currences of the description variables bound by plambda replaced by the
implicitly chosen projection arguments.

Effect Information: The effect of an implicit projection and application
of a polymorphic value is computed by performing effect masking on the
maxeff of the latent effect of the subroutine (with the d, replaced by the
implicit projection arguments) and the effects of ep and the ep,.

41
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Implicit Projection (continued) value expression

Example:

;Invoke the polymorphic identity function with
a boolean argument, implicitly projecting to get a

;boolean version.

((plambda ((t type))
(lambda ((x t)) x))

#t)
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plot value expression

(plet ((d Dezpl)...) epi ezp2 .-. )

The body of the plot expression, exp, ezp 2 ... , is treated as though

(begin ezp, ezp 2... ) is written.
The d, must all be distinct.

Semantics: plet provides a way of making type, effect, region and descrip-
tion function synonyms, or shorthand names, for complicated description
expressions.

The value of a plot value expression is the value of its body. Whenever
d, is encountered in the plot body, it is replaced by Dezpi. A reference to

4a d, in Dezpi is taken to refer to a binding for d, in the surrounding (outer)
scope. (See the description of pletrec for a discussion of recursive types.)

Type Information: The type of the plot expression is the type of its body
with Dexp substituted for d.

Effect Information: The effect of the plot expression is the effect of its

body with Dezp, substituted for d,.

Example:

;; The identity function on a complicated type.

(plot ((t (ref (subr pure (bool) bool) 6!)))

(lambda ((a-subroutine t)) a-subroutine))

.O
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pletrec value expression

(pletrec ((di Dexp1)...) ezpl ezp 2 ... )

The body of the pletrec expression, ezp1 ezp2 ... , is treated as though
(begin ezpl ezp2 ... ) is written.

The d, must all be distinct.

Semantics: First, all of the d, are read and these names are made available.
Then, the Dezp are successively evaluated and bound to the corresponding
d.. This order is important because it allows any of the Dezpi to refer
to some d,, thus providing for mutual recursion. This process is subject
to the following restriction: all description variables that can be recursively
reached, in the graph of description variable usage, from an expression Dezpi
must be defined before the processing of the binding for d., unless their kinds
are type. Typically, the Dezpi are recursive type descriptions and so there
is no problem. An error is signalled if any of the d, is defined as itself.

The value of a pletrec special form is its evaluated body with the (pos-
sibly recursive) definitions of the d. substituted for the d.

Type Information: The type of a pletrec value expression is the type of
its body with all occurrences of d replaced by Dexp,.

Effect Information: The effect of a pletrec construct is the effect of its
body with Dezpi substituted for d,.

Example:

A contrived example.

(pletrec ((tl (subr pure (boo1) t2))
(t2 (subr pure ) ti)))

(lambda ((x ti))

((x #t))))

44
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if value expregajon

(if ezp0 eZP1 6ZP2)

Semantics: The expression ezpo must be of type bool. If expo evaluates

N to Ot, then the value of the if expression is the value of ezpl, otherwise the
value of the if is the value Of ezp2 . The type of one of the arms of the if
expression must be a subtype of the other.

Type Information: The type of an if expression is the maximum of the
types of exp1 and ezp2.

Effect Information: The effect of an if statement is the maxef f of the
effect of the three expressions ezpo, ezpl, and ezp2.

Examples:

;The short-circuit "and".

(if x y of)

;The "not" function.

(lambda Wx (if x Of 0t)

45
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set! value expression

(set! var ezp)

Semantics: set! is the variable assignment operator. First, ezp is evalu-
ated. Then, the resulting value is placed in the location denoted by var. The
value of a set! expression is #u.

It is a static effect error for var to be in the region Q6. Furthermore, if
var is of type Tezp, then the type of ezp must be a subtype of Tezp.

Type Information: The type of the set ! expression is unit.

Effect Information: The effect of an assignment expression is (write r),
where r is the region var is in.

*Examples:

Mutate the boolean variable x to #t.

(set! x #t))

-; Set a boolean flag.

(set! flag (and? a b))

46
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2.3. Value Expressions

In addition to the above language constructs, the kernel provides three
subroutines which may be used with ref types. They are:

new : (poly ((r region))
(poly ((t type))

(subr (alloc r) (t) (ref t r))))

get : (poly ((r region))

(poly (Mt type))

(subr (read r) ((ref t r)) t)))

set : (poly ((r region))

(poly ((t type))
(subr (write r) ((ref t r) t) unit)))

new is used to allocate a new location in a particular region and initialize

the location to some value. ((proj new 1 ) #t) returns a reference to a
newly allocated location of type (ref boal 6 1 ) which contains the initial
value #t.

get is used to dereference a value of ref type, i.e. to return the value
currently stored in the location indicated by the reference value.

set is used to replace the value stored in the location denoted by a ref
type with a new value.

9%
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Ch. 2. The FX Kernel
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Chapter 3

The FX Standard Types

This chapter describes the standard types that are provided by every FX
• , implementation. These types fill out the framework introduced by the FX

Kernel with a set of useful types and subroutines. We present the FX stan-
dard types in order of increasing complexity.

For each data type, we give a brief overview of its purpose, the syntax
of literals, and a list of the operations provided.

Many of the subroutines described in this chapter are abstracted over
multiple descriptions (see for instance, the caar subroutine which is ab-
stracted over one region and three types). As a general rule, region pa-
rameters are abstracted over first in the definition of a standard subroutine,
followed by other descriptions. This currying of description abstraction al-
lows a programmer to specify the region for a standard subroutine with a
proj expression and to omit the proj for the other description parameters.
The other description parameters will be computed by implicit projection

* (See page 41 for a description of implicit projection.)

Standard subroutines are generally abstracted over only one region pa-
rameter. If the values to be operated upon are in different regions, the user
has to pass the runion of those regions as the argument. If the operations
were abstracted over multiple regions, then the rule that disallows passing
the same region as an argument to two reE;on parameters would prevent the
use of the operation on values in the same region.

Unless otherwise stated, there is no type inclusion within these data
types, and literals are always immutable.
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Ch. 3. The FX Standard Types

3.1 Void

The type void is the type of certain non-terminating computations. For
example, it is the return type of the error function which is described in
Chapter 5.

Description

The void constant type is the empty type, i.e. there are no values of type
void; its kind is type.

The type void is a subtype of all types.

Literals

There are no literals of type void.

Operations

There are no operations for the type void.
This type is rarely used; one contrived example of its use is:

(letrec ((black-hole (lambda ()

(the pure void

(black-hole)))))
(black-hole))

:3.2 Unit

The unit constant data type is the type of computations that are only used
to perform side-effects. It is already defined in the FX Kernel (cf. previous

[ •chapter). Its kind is type.

VLiterals

There is one value of type unit, namely iu.

Operations

There are no operations for the type unit.
The type unit is generally used as the type of computations which return

no useful information.
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3.3. Booleans

;; The variable foo is located in region @bar.

(let ((mutate (the (subr (write @bar) 0 unit)
(lambda 0

(setl foo #t)))))

(mutate))

3.3 Booleans

The bool constant data type denotes the set of immutable boolean values.
It is already defined in the FX Kernel (cf. previous chapter).

Literals

There are two boolean literals, namely #t (for the true boolean) and #f (for
the false boolean).

Operations

The FX implementation provides the classical boolean operators:

equiv? : (subr pure (bool bool) bool)
and? : (subr pure (bool bool) bool)
or? : (subr pure (bool bool) bool)
not? (subr pure (bool) bool)

The more classical and and or special forms, which perform short-circuit
evaluations, are defined in the next chapter. Note also that equiv?, which
is the equality function on booleans, could be easily defined with the other
functions; equiv? is provided as a convenience to the programmer.

S
3.4 Integers

The nt constant data type denotes the set of immutable integers. The kind
of nt is type.

Literals

The FX int data type supports four distinct bases for integer literals. The
.r', distinction is indicated by a prefix, namely #b (binary), #o (octal), #d (dec-

imal) and #x (hexadecimal). If no prefix is supplied, #d is assumed.

Z51
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Ch. 3. The FX Standard Types

An integer literal is formed by an optional prefix, an optional sign (+ is
assumed if omitted), and a non-empty succession of digits that are defined

in the given base. The precision of integer values is unspecified.

Operations

The integer operations with their types are:

M : (subr pure (nt int) bool)

< : (subr pure (int int) bool)

> (subr pure (jnt int) bool)
<=: (subr pure (nt int) bool)

>-: (subr pure (mt int) bool)

These are the five standard comparison functions on integers.

+ (subr pure (jnt int) int)
+ : (subr pure (nt int) int)

V * :(subr pure (int int) int)

/ (subr pure (tnt int) int)

These are the four standard arithmetic operations on integers. A dy-
namic error is signalled in case of division by zero or overflow.

remainder : (subr pure (int int) int)

modulo : (subr pure (nt int) int)

abs : (subr pure (jnt) int)

4% The first two functions implement number-theoretic integer division; the
functions remainder and modulo differ on negative arguments (remainder
has always the sign of the dividend). The abs function erases the sign of its
argument.

3.5 Floating-point numbers

The float constant data type denotes the set of immutable real numbers.

The kind of float is type.
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3.5. Floating-point numbers

Literals

The FX float data type supports the standard FORTRAN-inspired syntax
for literals. These are typical examples of floating-point number literals:

+0.8866 a Boat approximation of 2/3
6.66e-1 a less accurate one
-6.66E-1 its opposite value
0.0 the floating-point number zero

A float literal is formed by an optional sign, a non-empty succession of
decimal digits, a decimal point, a non-empty succesion of decimal digits and
an optional exponent denoted by the letter "E" or e", an optional sign and
a sequence of decimal digits. The precision of floating point values is un-
specified; this means that truncation may occur if the number of significant
digits is too large.

Operations

The floating-point operations with their types are:

fl (subr pure (float float) bool)
fl< (subr pure (float float) bool)
fl> (subr pure (float float) bool)

fl<-: (subr pure (float float) bool)

fl>-: (subr pure (float float) bool)

I'i These are the five standard comparison functions on floats.

fl+ (subr pure (float float) float)
fl* (subr pure (float float) float)
fl- (subr pure (float float) float)

fl/ (subr pure (float float) float)

These are the four standard arithmetic operations on floats. A dynamic
error is signalled in case of division by zero, overflow or underflow.

.7, flabs : (subr pure (float) float)

This function erases the sign of its argument.
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Ch. 3. The FX Standard Types

exp (subr pure (float) float)
log (subr pure (float) float)
sin (subr pure (float) float)
cos (subr pure (float) float)
tan (subr pure (float) float)
asin: (subr pure (float) float)
acos: (subr pure (float) float)
atan: (subr pure (float) float)
sqrt: (subr pure (float) float)

These are the basic arithmetic operations on floats.

floor (subr pure (float) int)
ceiling (subr pure (float) int)
truncate : (subr pure (float) int)
round : (subr pure (float) int)

int->float: (subr pure (nt) float)

We provide the classical conversion functions from integers to floats, and
vice-versa.

3.6 Characters

The char constant type denotes the set of immutable characters. The kind
of char is type.

Literals

Character literals are represented with the #\character or #\identifier nota-
tion and must be followed by a delimiter. For instance, #\a is the lower case
"a" character, while #\Z is the upper case letter "z"; #\newline denotes the
NewLine character.

The list of allowed identifiers must include:

backspace newline page
space tab

The case used in the character identifiers is irrelevant; #\newline is
equivalent to #\NewLine for example.
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3.6. Characters

Operations

The operations on characters are either case sensitive or case insensitive.
The latter option is indicated by a -ci suffix in the operation name.

There is a total ordering on characters, which is compatible with the
ASCII standard on lower-case letters, upper-case letters and digits (without
any interleaving between letters and digits).

The operations defined on characters with their types are:

char-? (subr pure (char char) bool)
char<? : (subr pure (char zhar) bool)
char>? (subr pure (char char) bool)
char<? (subr pure (char char) bool)
char>-? : (subr pure (char char) bool)

These are the five boolean comparison functions on characters.

char-ci=? : (subr pure (char char) bool)
char-ci<? (subr pure (char char) bool)
char-ci>? " (subr pure (char char) bool)

char-ci<=? (subr pure (char char) bool)
" -char-ci>=? (subr pure (char char) bool)

These five comparison functions treat upper- and lower-characters as the
same.

char-alphabetic? (subr pure (char) bool)

char-numeric? : (subr pure (char) bool)
char-whitespace? : (subr pure (char) bool)

* A character is alphabetic if its lower-case equivalent is between #\a and
#\z. It is numeric if it is between #\0 and #\9.

L " char-lower-case? (subr pure (char) bool)
char-upper-case? : (subr pure (char) bool)
char-upcase : (subr pure (char) char)

0, char-downcase : (subr pure (char) char)

The two boolean-valued subroutines test the case of a character. The two
last subroutines map a character to the corresponding case; non-alphabetic

Acharacters remain unchanged.
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char->int : (subr pure (char) int)
int->char : (subr pure (int) char)

These two subroutines convert between characters and their positions in
the ordering mentioned above.

3.7 Strings

The string type constructor is used to denote the set of zero-indexed se-
quences of characters. Once created, a string is of constant length.

Description

The type of a string located in a region Rezp is:

(string Rexp) :: type

and the kind of string is:

string :: (dlunc (region) type)

A type (string Rezp1 ) is a subtype of (string Rezp2) iff Rezp1 is a subregion
of Rezp2 .

Literals

A string literal is represented by a double-quote ("), a sequence of characters

(where \ is the escape character for itself and the double-quote character),
and an ending double-quote.

Operations

The operations on strings with their types are:

make-string : (poly ((r region))
(subr (alloc r)

(nt char) (string r)))
string-length : (poly ((r region))

(subr pure ((string r)) int))
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The make-string function creates a string in the region r of the length
given by the first argument and fills it with the second argument. The
latent effect of string-length is pure since the length of a string, which is
constant, can be obtained without looking at (i.e. have a read effect on) the
string value.

string-ref (poly ((r region))
(subr (read r)

((string r) int) char))

string-set! (poly ((r region))

(subr (write r)
((string r) nt char) unit))

string-fill : (poly ((r region))
, (subr (write r)

((string r) char) unit))
substring-fill!

(poly ((r region))
(subr (write r)

((string r) mt mnt char) unit))

The function string-ref returns the n-th character in a string where n
is the second argument. The subroutine string-set ! modifies its argument
at the given index. The subroutine string - fill1 fills its argument with
the given character. The last subroutine (substring-f ill!) allows one to
fill a part of a string by the character given as the last argument; the first
mnt gives the beginning index and the second is one greater than the index
of the last position in the substring. It is a dynamic error to try to access
out-of-bounds elements of strings. The mutating subroutines return #u.

stringsn?.
string<?.
string>?.

string<?.
string>-?.

string-ci?,

string-ci?,
string-ci=?.

string-ci<?,
string-ci>=?

(poly ((r region))
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(subr (read r)
((string r) (string r)) bool))

These are the lexicographic comparison functions on strings; the case-
insensitive ones have a -ci suffix.

substring :
(poly ((rl region))

(subr (read rl)
((string rl) int int)
(poly ((r2 region))

(subr (alloc r2) ) (string r2)))))

string-append :
0 !(poly ((r1 region))

(subr (read rl)
((string ri) (string ri))
(poly ((r2 region))

(subr (alloc r2) ) (string r2)))))

string-copy
(poly ((r1 region))

(subr (read ri)
((string ri))

(poly ((r2 region))

(subr (alloc r2) ) (string r2)))))

These functions create newly allocated strings from their argument(s).
The substring arguments must specify valid index ranges. More pre-

cisely, it is a dynamic error if the first integer argument (which is the index
into the string argument a, located in r, of the first character to be included
in the substring) is not between zero and the length of the string minus one,
inclusive, if the second integer argument (which is one larger than the index
into s of the last character to be included in the substring) is not between

zero and the length of the string, inclusive, and if the first integer argument
is not less than or equal to the second. If the two integer arguments are
equal, then the substring returned is the empty string ("").

For example, consider

((proj ((proj substring @from) s start end) Gto))

start is the index in the string s of the first character of the result; it should
Vbe less than or equal to end which is the last (non-included) character index
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in a. The following table shows some sample results for different values of
s, start, and end:

s start end result

"boondoggle" 4 7 "dog"

"foobar" 3 3 H"
"insipid" 4 7 "pid"

"yuk" 0 1 "y"

The string-append function implements the concatenation of its argu-
ments.

string-copy yields a fresh copy of its argument.

3.8 Symbols

The symbol constant data type is used to denote the set of immutable values
whose name is the only important characteristic. Its kind is type.

Literals

A symbol literal is represented with the quote special form.

P
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quote value expression

(quote id)
or
' id

id is any identifier (see the Conventions section).
, id is equivalent to (quote id).

Semantics: A quoted identifier evaluates to the symbol whose name is the
upper-case equivalent of the identifier.

Type Information: (quote id) is of type symbol.

Effect Information: A quote expression is pure.

Example:

;; The following expression returns Ot.

(synbol-? (quote Foo) '1Oo)
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3.9. References

Operations

We provide conversion functions on symbols to and from strings:

symbol->string :
(poly ((r region))

(subr (alloc r) (symbol) (string r)))
string->symbol :

(poly ((r region))

(subr (read r) ((string r)) symbol))

However, the moet important characteristic of symbols is that they are
treated in a very special way by the FX interpreter or compiler; they are
interned. For instance, if the symbol 'foo is used in two different places in
a program, they will in fact refer to the same (physical) value. To detect
whether two symbol values are the same in this very precise sense, we pro-
vide the symbol-? function which tests for the physical equality (i.e., the
identity) of two symbols:

symbol-? : (subr pure (symbol symbol) bool)

The hash function computes a hash code from its argument.

hash : (subr pure (symbol) int)

3.9 References

The ref type constructor is used to denote the set of values that are refer-
ences to other values. It is already defined in the FX Kernel (cf. previous

chapter).

Description

The type of a reference, located in a region Rezp, to a value of type Tezp is:

(ref Tezp Rexp) :: type

and the kind of ref is:

,O ref : (dfunc (type region) type)

A type (ref Tezp Rexpl) is a subtype of (ref Tezp 2 Rezp2 ) iff Rexp1 is a
subregion of Rezp 2 and Tezp is interconvertible to Tezp 2 , or Rexp, = Rezp 2

= C- and Tezp is a subtype of Tezp 2.
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Literals

There are no literals for ref values.

Operations

There are three operations on reference values, which have already been
introduced in the Chapter 2.

new (poly ((r region))
(poly (Ct type))

(subr (alloc r) Wt (ref t r)
get (poly ((r region))

(poly M( type))
(subr (read r) ((ref t 0)) t)

set :(poly ((r region))
(poly MC type))

(subr (write r) ((ref t r)) unit)))

It is a static effect error to apply set to a ref value in the region Q-.

3.10 Uniqueofs

The uniqueof type constructor is used to denote sets of values in which each
element is distinguishable.

Description

The type of a unique value of type Tezp is

(uniqueot Tezp) :: type

and the kind of uniqueof is:

uniqueof :: (dfunc (type) type)

A type (uniqueof Tezp 1) is a subtype of (uniqueof Tezp 2) iff Texp, i's a

0. subtype of Tezp2.

Literals

There are no literals for uniqueof values.
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Operations

There are three operations on uniqueof values:

unique (poly MC type))
(subr (alloc *uniqueof) Wt Cuniqueof 0))

The unique subroutine creates a unique value from a value of type t.
The alloc effect on Guniqueof is used to ensure that no memoization will
be performed on calls to unique.

value :(poly MC type))
(subr pure (uniqueof t) t)

The value subroutine returns the embedded value corresponding to a
unique value.

eq? :(poly ((i type) (t2 type))
(subr pure ((wiqueof tI) (uniqueof t2)) bool))

The boolean-valued subroutine eq? tests whether two unique values were
created by the same call to the unique function.

3.11 Pairs

The notion of pair in FX is the same as the standard Lisp one.

Description
* The type of a pair, located in a region Rexp, whose first element (CAR) is

of type Tezp1 and its second (CDR) is of type Texp2 is

* (pairof T,:zpl Texp2 Rexp) ::type

and the kind of pairof is:

0~pairof ::(dfunc (type type region) type)

A type (pairof Texpl, TezP12 Rexp1 ) is a subtype of (pairof TeXP21

J~. TeXP22 ReXP2) iff Rexp, is a subregion of ReXP2, Texpl, is interconvertible
to TeXP21 and TezP12 is interconvertble to TeXP22, or Rexp1 = ReXP2 Q-,
Texpl, is a subtype of TeXP21 and TeXP12 is a subtype of TeXP22.
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Literals

There are no literals for pair values.

Operations

We provide the standard set of operations on pairs.

null? (poly ((r region))
(poly ((ti type) Mt type)),

(subr pure ((pairof tI t2 r)) bool))

The function null? tests whether a pair is actually null i.e. whether it
is equal to 0) (see the next section for a description of the null type).

cons
(poly ((r region))

(poly M(i type) (t2 type))
(subr (alloc r) (tI t2) (pairof ti t2 r)))

car:

(pol~y ((r region))
(poly ((ti type) (t2 type))

(subr (read r) ((pairof tI t2 r)) ti)
cdr :

(poly ((r region))

(poly ((i type) (t2 type))
(subr (read r) ((pairof ti t2 r0) t2))

caar

(poly ((r region))
(poly M(t type) (t2 type) (t3 type))

(subr (read r)
*((pairof (pairof tI t2 r) t3 r)) ti)))

cadar
(poly ((r region))

(poly ((I type) (t2 type) (t3 type) (t4 type))
(subr (read r)

((pairof (pairof tI
(pairof t2 t3 r)
r)

t4

r)
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t2)))
caaaar : idem, con variatione

The standard CONS, CAR, CDR and C{AID}+R operations are defined
in FX (up to four A's or D's in C... R). We did not give the types of all the
C... R constructs since they are all similar.

set-car! :
(poly ((r region))
(poly ((tl type) (t2 type))

(subr (write r) ((pairof ti t2 r) t1) unit)))
set-cdrl :

(poly ((r region))
(poly ((tI type) (t2 type))

(subr (write r) ((pairof tl t2 r) t2) unit)))

These are the standard Lisp forms for mutation of pairs. These subrou-
tines cannot be used with pairs of pairs that span more than one region. The

subtyping rule for pairs does not allow the programmer to pass a pair to the
subroutine if the pair is not in the precise region expected. The programmer
may supply his own subroutines to handle such complicated structures.

3.12 Null

The null data type is provided as the type of the list with r.-3 elements.

Description

The kind of null is type.
The type null is a subtype of every type of the form (pairof Texp,

* Texp 2 Rezp). This subtyping rule is safe since there is no mutable value of
type null.

Literals

J: The only value of type null is the literal 0.

Operations

There are no operations which explicitly use null as the type of an argument
or as the type of a returned value.
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r* Ch. 3. The FX Standard Types

Since null is a subtype of any pair type, some operations on pairs may
be applied to (). It is a dynamic error to apply pair access operations such
as car or cdr on 0. A dynamic error is signalled if set-carl or set-cdrl
is applied to 0.

3.13 Lists

The type constructor listof is used to denote the set of homogeneous lists
of a given type, allocated in a given region.

Description

We define listof in terms of pairof:

2:'/  (dlambda ((t type) (r region))
(dletrec ((listof-t-in-r (pairof t listof-t-in-r r)))

listof-t-in-r))

The type of a list defined in the region Rexp with elements of type Tezp
is then:

(listof Tezp Rezp) :: type

and the kind of listof is:

listof :: (dfunc (type region) type)

The seemingly infinite recursive definition of listof does not prevent us
from producing values of type listof since null is a subtype of any (pairof
Tezp1 Tezp 2 Rezp) and, then, of any (listof Tezp Rezp). Therefore, () is
the terminator of every list. Moreover, () is used to represent the empty
list.

Literals

There are no list literals for list values, other than (.

Operations

We provide the classical operations on lists. Remember that the operations
defined for pairs apply equally here. In particular, use the null? subroutine
to determine if a list is empty.
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3.13. Lists

list (poly ((r region))
p, (poly ((t type))

(vsubr (alloc r) t (listof t r))))

This function takes a variable number of arguments of type t; its type is
built with the vsubr type constructor, which is defined in the next section.

length (poly ((r region))
(poly (Mt type))

(subr (read r) ((listof t r)) int)))

*" The length of a list may be changed by the program by using set-cdr 1.

length has a read effect because it has to take the cdr of each pair of the
list until it gets to the end.

append (poly ((r region))

(poly ((t type))

(subr (maxeff (read r) (alloc r))

((listof t r) (listof t r))
(listof t r))))

reverse (poly ((r1 region))
A(poly ((t type))

(subr (read ri)

((listof t ri))
(poly (Cr2 region))

(subr (alloc r2)

C) (listof t r2))))))
list-tail (poly ((r region))

(poly (Ct type))
(subr (read r)

((listof t r) int) (listof t r))))
list-ref (poly ((r region))

(poly (Mt type))
(subr (read r)

((listof t r) int) t)))

The function call (list-tail 1 k) returns the sublist of 1 after omit-
ting the first k elements. The function call (list-ref I k) yields the k-th
element of the list 1 (the first element being the zero-th).

memq
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(poly ((r region))
(poly MC type))

Csubr (read r)
(Cuniqueof t) (listof (uniqueof t) r)
Clistof (uniqueof t) r)))

assq:
(poly ((r region))

(poly ((ti type) (t2 type))
(subr (read r)

((uniqueof t1)
(liatof (pairof (uniqueof t1) t2 r) r)

(pairof (uniqueof t1) t2 r)))

0 Since the memq and assq functions traditionally use the eq? predicate,
they cannot be abstracted over any sort of FX types, but are limited to

* uniqueofs. Note that, contrary to Scheme, these functions return 0) when-
ever the uniqueof argument does not match any element of the list passed
as a second argument.

member:
(poly (Cr region))

(poly MC type) (e effect))
Csubr (maxeff (read r) e)

((subr es (t t0 bool)
t
(listof t r)

(listof t rOM)
assoc

(poly ((ri region))
(poly ((t type) (t2 type) Ce effect))

(subr (maxeff (read r) e)
((subr e Wt t2) bool)

iS,, (p~~~iro it )

(listof (pairof ti t2 r) r)

Contrary to the Lisp usage, the member and assoc functions have to be
provided with a comparison predicate (there is no way to provide in FX a
well-typed function equivalent to the general Lisp equal? predicate).
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string->list

(poly (Cr region))
(subr (maxeff (read r) (alloc r))

((string r)) (listof r char)))

list->string

(poly ((r region))

(subr (maxeff (read r) (alloc r))

((listof r char)) (string r)))

These functions enable the conversion of lists of characters to and from
strings.

The fairly standard control structures provided by Lisp on lists are fully
provided in the FX implementation.

map

(poly ((r region))
(poly ((tl type) (t2 type) (e effect))

(subr (maxeff e (read r) (alloc r))
((subr e (t) t2) (listof ti r))
(listof t2 r))))

for-each :
(poly ((r region))

(poly ((tl type) (t2 type) (e effect))

(subr (maxeff e (read r))
((subr e (ti) t2) (listof ti r))

unit)))
reduce :

(poly ((r region))
(poly (Mt type) (e effect))

(subr (maxeff e (read r))
((subr e (t t) t) (listof t r) t)
t)))

where the functions map and for-each are performed from left to right and
where the reduction done by reduce is right-associative, e.g.:

(reduce + (list 1 2 3) 0) = (+ 1 (+ 2 (+ 3 0)))
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3.14 Vsubrs

MACLISP "lexprs" and CommonLISP &rest arguments are well-known
techniques to allow the definition of subroutines which accept a variable
number of arguments. This feature is provided in FX with the type con-
structor vsubr (for "variable-subr").

Description

The type of a subroutine that accepts a variable number of arguments of
type Texp (a list of which is bound to the sole formal parameter), returns a
value of type Texp,1., and has a latent effect Eexp is:

(vsubr Eczp Tezp Tezp,,) :: type

The kind of vsubr is

vsubr :: (df unc (effect type type) type)

A function of type (vaubr Eezpl Tezpl Texpt. 1) is a subtype of (vsubr
Eezp2 Tczp 2 TeXP7 t. 2) ifF Eezp1 is a subeffect of Eezpl, Tezpl is a subtype
of Texp, and Tezprgni is a subtype of TeXPt.~2.

Literals
There are no literals for vsubr values.

Operations

apply:
(poly ((r region))

* (poly M(I type) (t2 type) (e effect))
(subr (maxeff e (read r)

((vsubr e tI t2)I (liatof tI r)
t2))

There is one special form to build vaubr expressions, namely vlambda,
and one to use them, namely Variable-length Application.
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vlambda value expression

(vlambda (var Texp [Rezp]) exp, CZP2 . .. CXp,1)

Semantics: See page 34 for the detailed semantics of the basic lambda
construct (i.e., without the special binding).

The subroutine takes zero or more arguments, each of which must have
a type compatible with Tezp. When the function is applied to these n
arguments, they are gathered in a list of type (listof Tezp Q-); this list is
then bound to vat allocated in the region Rezp (which defaults to a-).

Type Information: If the type of the body of the vluibda is TeZPbody,
then the type of the subroutine value created is:

(vsubr Eezp Tezp Tezpbody )

where Eezp is the latent effect of the subroutine. Eezp is computed by
performing effect masking on the uaxeff of (alloc Rexp) and the effect of
the ezpi.

Effect Information: The effect of a vlambda expression is pure.

Example:

;; A pre-projected (on Q-) implementation of list.

(plambda ((t type))
(vlambda (1 t)

1))
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Variable-length Application value expression

(ezp ezpi ... )

Semantics: The expression ezp must evaluate to a vsubr value. The ezp
are the actual parameters, or arguments to the subroutine. The expressions
are all evaluated from left to right (ezp first). The evaluated arguments are
gathered into a list (allocated in C-f). Then, the list is bound to the variable
which is the formal parameter specified in the definition of the vsubr value.

The body of the subroutine is then evaluated with the formal so bound.
The value of the variable-length application form is the value obtained by
thus evaluating the subroutine body.

Type Information: Each of the ezpi must have a subtype of the type given
with the corresponding formal parameter; if ezp evaluates to a subroutine
value of type (vaubr Eezp Tezp Tezpb&d.), then ezpi must have a subtype of

type Tezp.
The type of the application expression is the return type, Tezpbod, of

the subroutine.

Effect Information: The effect of the application expression is computed
by performing effect masking on the zaxef f of the latent effect of the sub-
routine and the effects of ezp and the ezpi.

Example:

Vlaubda as a list constructor.

A ((vlanbda (1 int) 1) 1 2 3 4)
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3.15. Promises

3.15 Promises

The promise data type is used to describe delayed values in the sense of
Scheme. A delayed value denotes the "promise" of a future evaluation of
a given expression; the precise moment when this suspended expression is
evaluated is controlled by the user. This type constructor and its operations
can be used to create potentially infinite data structures.

Description

The type of a delayed value is:

(promise Eezp Texp) :: type

where Eezp is the effect of evaluating the delayed expression and Tezp is the
type of the delayed expression. The kind of promise is:

promise :: (dfunc (effect type) type)

A promise value of type (promise Eezp, Texpl) is a subtype of (promise
Eezp2 Tezp2 ) iff Eezp, is a subeffect of EeXp 2 and Tezp, is a subtype of
Tezp 2 .

Literals

There are no literals for promise values.

Operations

There is only one special form and one subroutine that deal with promise
expressions: delay creates a delayed expression and force evaluates its
argument and returns the resulting value.
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delay value expression

(delay cxp)

Semantics: This special form creates a delayed value from its (unevaluated)
argument. The result of the delay expression is the newly allocated delayed
value.

Type Information: The type of the delay expression is constructed with
the type and (latent) effect, Texp and Eexp, of ezp:

(promise Eezp Tczp)

* Effect Information: If the effect of ezp is pure, then the effect of (delay
exp) is also pure. Otherwise, the delay expression has effect (alloc @promise).

Examvple:

.A generator of streams

(pletrec ((int-stream (pairof mnt
(promise (alloc (runion as @promise))

int -stream)

(letrec ((next (lambda (Cn iut))
(the (alloc (runion as @promise)) iut-stream

((proj cons as)

41e
(delay (next C. n O M

(next 0))
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3.16. Vectors

The force subroutine, which evaluates a delayed expression, has type:

force:

(poly ((e effect) (t type))

(subr e ((promise e t)) t))

Note that forced expressions are memoized; forcing a delayed value twice
is equivalent to a single force operation.

3.16 Vectors

The notion of integer-indexed, homogeneous data structure is provided in
F" by the vectorof type. In FX, vectors (sometimes called arrays in other
languages) are indexed starting at zero and, once created, are of constant

length.

Description

A vector, which is located in a region Rezp and contains elements of type

Tezp, has type:

(vectorof Texp Rezp) :: type

The kind of vectorof is:

vectorof :: (dfunc (type region) type)

A type (vectorof Tezpj Rezpl) is a subtype of (vectorof Tezp 2 Rezp2 )
iff Rexp1 is a subregion of Rezp2 and Tezp, is interconvertible to Tezp2 , or
Rezp, = Rezp 2 = Q= and Tezpj is a subtype of Tezp 2.

Literals

There are no literals for vector values.

Operations

0* The allowed operations on vectors are given below:

make-vector :

(poly ((r region))

(poly (Mt type))
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(subr (alloc r) (int t) (vectorof t r))))
vector :

(poly ((r region))
(poly ((t type))

(vsubr (alloc r) t (vectorof t r))))
vector-length

(poly ((r region))
(poly ((t type))

(subr pure ((vectorof t r)) int)))
vector-ref

(poly ((r region))
(poly (t type))

(aubr (read r) ((vectorof t r) int) t)))

The make-vector function creates a new vector the number of elements
of which is given by its first argument and the initial content by the second.
The vector function takes a variable number of arguments and creates a
new vector with them as initial values.

The latent effect of vector-length is pure since the length of a vector,
which is constant, can be obtained without looking at (i.e. have a read effect
on) the vector value.

The vector-ref function yields the value associated with an index in a
vector; it is a dynamic error if the index is not valid, i.e. between zero and
the length of the vector minus one inclusive.

vector-set! :
(poly ((r region))
(poly (Mt type))

(subr (write r)
* ((vectorof t r) tnt t) unit)))

vector-f illf
(poly ((r region))
(poly (Mt type))

(subr (write r)
((vectorof t r) t) unit)))

The vector-set I function modifies its vector argument by setting the
value of the third argument at the given index (second argument) . The
vector-fill! function mutates its vector argument by filling it with the
second argument. These two functions return #u.
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3.17. Records

vector->list
(poly ((r region))

(poly ((t type))
(subr (aaxett (read r) (alloc r)

((vectorof t r)) (listof t r)))
list->rector:

(poly ((r region))
(poly MC type))

(subr (.axeff (read r) (alloc r)
((istof t r)) (vectorof t r)))

These functions convert vectors to and from lists.

3.17 Records

The notion of heterogeneous data structures with named fields is intro-
duced in the FX language via the recordof type constructor. There are
three special forms for manipulating recordof values: record, select and
record-set I.

7,7



rec ordof type expression

(recordof (0i 1 Tezp1 ) . .. (n.m Tezpm)) Rezp)

Semantics: This is the type of a record (i.e., an ordered aggregate data
structure containing zero or more fields) defined in region Rexp with fields

- (n, Texp1 ), .. .(nnm Texp.).

* Each field has a name (an identifier) and a type. The order of the fields
within the recordof type is relevant and the field names must be distinct.

A record type (recordof ((n, Texp1 j) ... (nn Texplim)) Rexp1 ) is a sub-
type of (rec ordof ((n, TezP21) . . . (nq Texp2,)) ReXP2 ) iff Rexp1 is a sub-
region of RCXP2, M >_ q, and all the Tczpli are interconvertible to Tezp 2 i,

or

1. Rexp, = ReXP2 =6

2. m >q

3. for each field name rai, Texpli is a subtype of Texp2,

There are no literals for record values.

Kind Information: The kind of a recordof expression is type.

Example:

The type of a person record.

(recordof ((name (string 6-))
4,. (address (string Q-))

(phone-number (string 6G-)))

@Persons)
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record value expreuwion

(record ((n, expl) ..(n. exp.)) [Rexp])

The field names v&i must all be distinct.

Semantics: The record expression is used to create new record values.
The expi are sequentially evaluated and the results are combined in a record
value allocated in Rexp, or 0- if omitted. The result is the newly allocated
record value.

Type Information: The result has type (recordof ((n, Tezp 1) ... (n,,m
Tezp.)) Rezp) if the type of ezp1 is Tczp,.

Effect Information: The effect of the record expression is the maxef f of
(alloc Rexp) and the effects of evaluating the ezpi.

Example:

*Just a standard person record.

(let ((Joe (record ((name *Joe L.UserN)
S (address "Hacker's Heaven, MIT")

(phone-number "258-1000")) @Persons)))
Joe)

FP .*
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select value expression

(select ezp nk)

Semantics: The select expression accesses a single field of a record value.
The first argument must be an expression ezp of type (recordof ((n, Tezpl)

(n,,m Tezpm)) Rezp). The field name nk must be one of the {n-}. The
result of the select expression is the contents of the n field of the record
value returned by the evaluation of ezp.

Type Information: The type of this expression is Tezpt.

Effect Information: The effect of this expression is the saxef f of the read
effect on Rezp and the effect of evaluating ezp.

Example:

Taking the address of Joe L. User.

(select Joe address)
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record-set ! value expression

(record-set! ezpl n ezp2)

Semantics: The record-set I expression mutates a single field of a record
value. The first argument must be an expression ezp1 of type (recordof
((n, Tezpl) ... (n. Tezp,,)) Rezp) where the region Rexp is mutable. The
field name n must be one nj of the {ni}. The ezp, is evaluated first and
then ezp 2 is evaluated to yield a value v. The field nr of the record ezp is
then accordingly mutated to the new value v. The value returned by the
record-set! expression is #u.

Type Information: The type of ezp 2 must be a subtype of Tezp,. The
type of the record-set I expression is unit.

Effect Information: The overall effect of the record-set I expression is
the maxeff of the write effect on the region Rexp associated with ezpl and
the effect of evaluating ezpl and ezp 2.

Example:

;; Changing Joe's address.

(record-set! Joe address "Big Blue. Yorktown")
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Ch. 3. The FX Standard Types

3.18 Oneofs

The notion of tagged variant, or discriminated union, is provided in FX by
the oneof type constructor. There are three special forms for manipulating
oneof values: one, tagcase and one-net 1.
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oneof type expression

(oneof ((n, Tezpl) (n2 Tezp2)... (n,. Tezpm)) Rezp)

Semantics: This is the type of a oneof value defined in the region Rezp
and whose possible tags (identifiers) with associated contents types are (ni
Texpl), (n2 Tezp2), ... (nm Texp).

The tags appearing in the oneof type must be distinct. The order of the
tags appearing in oneof type is irrelevant.

A oneof type (oneof ((n1 Tezpu1 ) (n2 Tezp 1 2) ... (n. TeZplm)) Rezp l )
is a subtype of (oneof ((P1 Tezp 21 ) (P2 TezP22 ) ... (pq Tezp 2,)) ReZp2 ) iff
m < q, for each field name ni there is a j such that ni = pi and either

1. Rezp, is a subregion of Rezp 2

* 2. for each field name nf and corresponding pi, Tezpli is interconvertible
*to Tezp2i

or

1. Rexp = Rezp2 = 4-

2. for each field name nj and corresponding pi, Tezpli is a subtype of
Tezp2j

There ;s no literals for oneof values.

Kind Information: The kind of a oneof expression is type.

Example:

;; The type of a basket.

(oneof ((oranges int)
* (apples int))
* @Market)
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one value expression

(one Tezp n ezp)

Semantics: The one expression is used to create new oneof values. The tag
n must be one of the tags appearing in Tezp, which must be a oneof type.
A new oneof value of type Texp is allocated. The tag of the new value is
n and its contents is the result of the evaluation of ezp, the type of which
must be a subtype of the type corresponding to n in Tezp. The result of the
one expression is the newly allocated oneof value.

Type Information: The type of the one expression is Tezp.

Effect Information: The effect of the one expression is the maxeff of
(alloc Rexp) and the effect of evaluating ezp, where Rezp is the region
parameter of the oneof type Tezp.

Example:

;; Creating a oneof representing 3 apples.

(let ((basket (one (oneof ((apples int) (oranges int))
M4arket)

apples 3)))
basket)
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tagcase value expression

(tagcase va
(n1 ezp,, ezp 2 ... )

(n2 eCP2 e ... )...

[(els CZP.l C .2 ). )
or

(tagcase (var exp [Rezp.,])
(n1 eZPiI eZP12 ... )

(n2 ep 21 eZP 22 ... )...

[(else ezP1 CZPm2 ... M

All nj must be distinct.

Semantics: The tagcase expression selects one of the clauses (ni ezpi 1

ezp, 2 ... ) according to the tag of a oneof value. Two different forms are
allowed, either with var or (var exp [Rezp.,.J). In the first case, the var is
evaluated and must have a oneof type. In the second case, exp is evaluated
and bound to var, which is allocated in Rexpu... (or @- if omitted); ezp must
have a oneof type.

If there is a clause which has the same tag ni as v, the value of var, then
(begin ezpi, ezpi2 ... ) is evaluated in an environment in which var is bound

to the contents of v. Otherwise, (begin ezp,, , eZp,,2 ... ) is evaluated.

Type Information: Let the oneof type of var be of the form (oneof ((mi
Tezp,) (m 2 Texp2)...) Rexp). Then, each tag n, must be one of the mi.
Each mi must appear exactly once, unless an else clause is given, in which

case some of the mi may be omitted. Within the i'th clause, the type of var
is Tezpi if ni is mi. Within an else clause, the type of var is unchanged if
Rexp is mutable, otherwise its oneof type is restricted to those fields that
don't appear as tags of clauses.

The type of a tagcase expression is the maximum of the types of the
last expressions in each clause.

Effect Information: The effect of the tagcase expression is the uaxeff

of (read Rezp), (alloc Rezp..,) and the effects of evaluating ezp,, and, if
present, ezp.
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tagicass (continued) value expression

Example:

;Evaluating the quality of a basket.

(tagc ass basket
(apples "Great 1 9
(oranges "Well .. )
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one-set I value expression

(one-set I ezpl n eZP2)

Semantics: The one-set I expression mutates the tag and contents of a
oneof value, which must be located in a mutable region. exp, and eZP2 are
evaluated successively to yield values vi and V2. The tag and contents of vj
are mutated to n and V2 respectively. The result of the one - set ! expression
is *u.

Type Information: ezp, must have type (oneof ((ni Texpl) (n2 Te--P2)
... (nflm Texpm..)) Rexp) where Rexp is a mutable region. The tag ni must be
the same as some ni. The type of ezp 2 must be a subtype of Texp1 . The
type of the one -set I expression is unit.

Effect Information: The effect of the one -set I expression is the maxef f
of (write Rexp) and the effect of evaluating exp1 and CaP2.

Example:

.Changing the basket to oranges.

(one-set! basket oranges 4)

-n
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Chapter 4

FX Syntactic Sugar

This chapter describes a set of special forms, called syntactic sugars, that are
not strictly necessary for writing FX programs but that represent common
idioms of programming. These constructs can be translated, or de-sugared,
into other FX constructs by simple syntactic transformations. They are
provided in the FX language as a convenience for the programmer.

The following descriptions are arranged in alphabetical order for easy
reference: and, cond, diet, dlet*, do, let, let*, plet* and or.

0.0.
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and value expression

(and exp1 ... ezp,)

. .., Semantics: This form performs the "and" evaluation of boolean expres-
sions using a "short-circuit" technique.

Every expression ezp, is successively evaluated. As soon as #f is returned
.- by one ezpi, the evaluation of the (possibly) remaining expressions is aban-

doned and #f is returned. If all the ezp, return #t, then #t is the value of
the and expression. By convention, (and) evaluates to #t.

Type Information: Each exp must be of type bool, which is the type of
the whole expression.

Effect Information: The effect of the and construct is the maxeff of the
effects of evaluating ezp,.

Sugar Information: The above and expression is equivalent to:

(if ezp1 (if ... (if ezp, *t *f) ... ) f)

Example:

• V. ;; A test for valid vector indices.

(and (>- index 0)
(< index (vector-length v))
(- (vector-ref v index) 0))
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c ond value expression

(cond (ezpggst, ezP11 .. eZP1I)

(Czpteatk CXPfl .. ezpkM)
(else Czp(k+1)1 ... eZP(k+l)P))

Semantics: The cond special form is a multiple-way test expression. The
expressions ezptet, are successively evaluated and as soon as one returns #t
(or the else clause is reached), the associated expressions are evaluated as
if they were inclosed in a begin special form.

Type Information: The expressions eZpt,,t, must be of type bool. The
type of a cond expression is the maximum of the types of the last expressions
in each branch (namely ezPin ... )

Effect Information: The effect of the cond construct is the maxeff of the
effects of all the ezpt.t and ezp,3 .

Sugar Information: The above cond expression is equivalent to:

(if Musta
(begin expl, ... ezP1 n)
(it

(if ezptestk
(begin eZPkl ... eZPkn)
(begin exp(ht+z)z ... ePklp).

Example:

* ;; The addition function.

(letrec ((add (lambda ((n int) (m int))
(the pure mnt

(Cond (<n 0) 0)
(nO0) m)

(else (add C- n 1)
(+m M

(add 1 2))

oil



dlet description expression.4

(diet ((d Dezpj)...) Dezp&.,)

The d, must all be distinct.

Semantics: diet provides a means of introducing synonyms for type, ef-
fect, and region expressions. The value of a dlet description expression
is a description expression, namely Dezp&. with the d. replaced by the
corresponding Dexp,.

Kind Information: The kind of the diet description expression is the kind
of Dezpbod. with each d, replaced by Dezpi.

Sugar Information: The diet description expression is equivalent to:

_I ((diaabda ((d, Kezp)... ) Dezp,,) Dezp...)

. .4assuming that the kind of Dezpj is Kezp,.

Example:

;; The type of a subroutine which takes two binary operations
;; on bools. two booleans and returns whichever one returns
;; Ot (say).

(diet ((subr-type (subr pure (bool bool) bool)))
(subr pure (subr-type subr-type bool bool) subr-type))

,2
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dlet* description expression

(diet* ((di Dezpl)...) Dezpbody)

Semantics: diet* provides a means of introducing synonyms for type, ef-
fect, and region expressions.

The value of a dilet* description expression is the value of its body.
Whenever d, is encountered in the diet* body, it is replaced by Dezp. A
reference to a d, in Dezpi is taken to refer to, either a previous binding of
d, in the current dlet* (if such binding exists), or a binding for d, in the
surrounding (outer) scope.
Kind Information: The kind of the dlet* description expression is the

kind of Dezpbod, with each d, replaced by Dezp,.

Sugar Information: The diet* description expression is equivalent to:

(diet ((d, Dexpl)) (diet* (...) DezpbodV))

Example:

;; The type of a subroutine which takes two binary operations
;; on bools, two booleans and returns whichever one returns
;; *t (say).

(diet* ((t bool)
(subr-type (subr pure (t t) t)))

(subr pure (subr-type subr-type t t) subr-type))

0
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do value expression

(do ((varl ezp jezp g. 1 [Rez1)...)

ep.4 1 ... )

The vari must all be distinct.
Omitting ezp.t is the same as writing vari there (i.e., (vari ezpj,.,) is

the same as (var ezpiniti var,)).

Semantics: do expressions are used for performing iterations. They define
a set of iteration variables, which are new variables allocated in Rezp (or 6=
if omitted), with initial values for those variables and (optionally) expressions
for updating them.

There are three parts to the evaluation of a do expression: the initializa-
tion, the iteration, and the return.

During the initialization, the ezpi,, are evaluated from left to right and
the resulting values are bound to the corresponding vari. These vari are not
available for use in the ezpiniji.

At the beginning of every iteration, ezpt.. t is evaluated. If the test returns
#f, then the ezPbodd are evaluated in order. Then, the exptC, are evaluated
from left to right and the results are bound as new values for the vari.
Iteration then starts over again.

If eZptt returns *t at the beginning of an iteration, then the result of
the evaluation of (begin Czprtni ezprt, 2 ... ) is returned.

Type Information: The expression ezpt,.t must be of type bool. Each

vari has the same type as ezpi,,,i. The type of each exp~tep must be a
subtype of the type of var,. The type Texpdo of the do expression is the type

Nof the last return expression, ezp,t,.

Effect Information: The effect Eezp&, of a do expression is computed by
performing effect masking on the saxe! f of the effects of the eZpi~iJ1 , the
ezpsv, ezp .,, the ezpt,,4 , the ezpl.,d,,, and (alloc Rezp).
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do (continued) value expression

Sugar information: The above do expression is equivalent to:

(letrec ((do-temp
(lambda ((var1 Tezp1 Rexp)...)

(the Eezp& Tczp&
(fezpg..t

(begin exPrtnl

(begin expbd~l ...

(do-temp ezpinmel ... )) d-epept...

where Texp, is the type of ezpj,,t, and do-temp, is a new identifier.

Example:

:Loop until too? is verified and then return the toggle.

(do ((toggle ft (not toggle)))
((t oo? toggle) toggle)
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let value expression

(let ((Van Cap1 [Reap])...) C1b CaPj...)

The body of the let expression, cap 1b epb..., is treated as though
(begin ezplk cp 2 ... ) is written.

The vari must all be distinct.

Semantics: let provides a way for creating synonyms, or shorthand names,
for complicated, lengthy, or computationally expensive expressions.

The body of the let expression, the expressions czpjb, is evaluated with
each of the variables vari, allocated in Reap (or a- if omitted), denoting the
value resulting from the evaluation of its corresponding ezp,. A reference
to one of the vari within these expressions is interpreted as a reference to
a binding for that vari in the surrounding (outer) scope of let (see the
description of letrec for a discussion of recursion).

The value of the let expression is the value of its body evaluated in this
way.

Type Information: The type of the let expression is the type of its body.

Effect Information: The effect of a let expression is the maxeff of the
effects of the epi, the ep,1 , and (alloc Reap,).

Sugar Information: A let expression is equivalent to an application of a
lambda expression. The above let expression is equivalent to:

((lambda ((var1 Tezpl [Rep 1 ) ... ) caplb cap2 ... CZpI...

assuming that the types of eap- is Tesp,.

* Example:

;; Avoid a double (expensive) computation.

(let ((y (expensive-computation)))

(loo y y))
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let* value expression

(let* ((varl czp1 [ReXpiD... ) ezp1 b ezP26... )

The body of the let* expression, eZplb CZ2b..., is treated as though
(begin eZPlb ezP2b...) is written.

Semantics: let* provides a way for creating synonyms, or shorthand names,
for complicated, lengthy, or computationally expensive expressions.

The body of the let* expression, the expressions CZPjb, is evaluated with
each of the vari, allocated in Rezp (or Q- if omitted), denoting the value
resulting from the evaluation of its corresponding exp,. A reference to one
of the vari within these expressions is interpreted as a reference to, either
a previous binding of vari in the current let* (if such binding exists), or
a binding for that vari in the surrounding (outer) scope of let* (see the
description of letrec for a discussion of recursion.)

The value of the let* expression is the value of its body evaluated in
this way.

Type Information: The type of the let* expression is the type of its body.

Effect Information: The effect of a let* expression is computed by per-
forming effect masking on the maxeff of the effects of the ezpi, the ezpb,
and (alloc Rezp,).

Sugar Information: A let* expression is equivalent to a nested list of
let. The above let* expression is equivalent to:

(let ((va exp, [RepJ))
(lets(.. ezpl1 ezp2b...)

* Example:

;; Avoid a double (expensive and voluminous) computation.

(let* ((y (voluminous-expression))

(y (expensive-computation y)))
0* (foo y y))
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or value expression

(or ezp1 . .. ezp.)

Semantics: This form performs the *o evaluation of boolean expressions
using a "short-circuit' technique.

Every expression ezpi is evaluated in turn proceeding from left to right.
As soon as one of the czp, evaluates to Ut, the evaluation of the (possibly)
remaining expressions is abandoned and Ut is returned. If all the ezpi return
U!, then *! is returned. By convention, (or) evaluates to Uf.

Type Information: All of the ezpj must be of type bool. The type of an
or expression is bool.

Effect Information: The effect of the or construct is the maxeff of the
effects of evaluating the exp,.

* m Sugar Information: The above or expression is equivalent to:

(it ezp1 #t (if ... (if cx,,, St U)..))

Example:

* .. A debug-only test.

(or *debug-phase*
(to-be-tested-latter))
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plet* value expression

(plet* ((d, Dexpl)...) ezp, .. p2...)

The body of the plet* expression, ezpl ezp 2 ... , is treated as though
(begin ezpl ezp2...) is written.

Semantics: plet* provides a way of making type, effect, region and de-
scription function synonyms, or shorthand names, for complicated descrip-
tion expressions.

The value of a plet* value expression is the value of its body. Whenever
d, is encountered in the plet* body, it is replaced by Dezpi. A reference
to a d, in Dezpi is taken to refer to, either a previous binding of d- in the
current plet* (if such binding exists), or a binding for d in the surrounding
(outer) scope. (See the description of pletrec for a discussion of recursive
types.)

Type Information: The type of the plot* expression is the type of its

body with Dexp substituted for d,.

Effect Information: The effect of the plet* expression is the effect of its
body with Dexp substituted for d,.

Sugar Information: The plet* value expression is equivalent to:

(plet ((d, Dexpl)) (plet* (...) exp, e.p,...))

Example:

;; The identity function on a complicated type.

(plet* ((t (subr pure (bool) bool))
(t (ref t et)))

(lambda ((a-ref-to-subr t)) a-ref-to-subr))
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Chapter 5

The FX Environment

We describe in this chapter the FX programming environment, which
includes input and output operations, an error-signalling facility, an
interpreter-oriented top-level, and a simple way to structure large FX pro-
grams. These primitive facilities will be supported by every FX implemen-
tation.

5.1 1/0 Facilities

The I/O fun 'Jions deal with a new value in the FX system, namely the file
system.

Definitions

This subsection introduces two new types: input-port and output-port,
0both of kind type. FX uses ports as an abstraction for files, where values

of type input-port are used for read operations and output-port for write
operations.

I/O operations have effects on the QI0 region. The region G01 is used to
describe the state of the file system and the input and output file pointers.

Literals

There are no literals of type input-port or output-port.
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Ch. 5. The FX Environment

Operations

FX provides a set of I/O subroutines that are compatible with the Scheme
I/O primitives. Since the FX input and output subroutines are duals of one
another, we only define the types of input subroutines. In order to compute
the types of output subroutines (the names of which are given in braces),
replace input by output in the definitions.

call-with-input-file {call-with-output-file ):
(poly ((r region))

(poly ((t type) (e effect))
(subr (maxeff e (alloc IO) (read r))

((string r) (subr e (input-port) t))
* t)))

current-input-port {current-output-port)
* (subr (maxeff (write CI0) (read 6I0)) 0) input-port)

Every running FX program inherits from the environment an initial value
for (current-input-port) and (current-output-port), initially bound to
the keyboard and the console.
with-input-fro-file {with-output-to-file})

(poly ((r region))

(poly ((t type) (e effect))

(subr (maxeff (write 010) (read CIO)
e (read r) (alloc 6I0))

((string r) (subr e () t))
A, t)))

open-input-file {open-output-file)

(poly ((r region))

(subr (maxeff (alloc IO) (read r)
(write IO) (read CI0))

": ((string r)) input-port))

close-input-port {close-output-port)

(subr (maxeff (read CI0) (write 6I0)) (input-port) unit)

char-ready?
(vsubr (maxeff (read CIO) (write 10)) input-port bool)
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5.1. 1/O Facilities

Read functions are provided for each basic type. A dynamic error will
be signalled if the type of the value to be read is not correct. These read
functions use the current input-port to perform their I/O operation.

read-bool :
(subr (maxeff (write 6I0) (read CI0)) () bool)

read-char :
* (subr (maxeff (write 6I0) (read 6I0)) () char)

read-int :
(subr (maxeff (write 6I0) (read CI0)) () int)

Aread-float:
'A (subr (aaxeff (write 6I0) (read 6I0)) 0 float)

read-string
(subr (maxeff (write 610) (read CI0)) () (string a-))

read-symbol

(subr (maxeff (write 6I0) (read 6I0)) () symbol)

It is a dynamic error to perform a read operation if the end of file of the
current input port is reached. The presence of the end of file for the current
input port can be tested by the eof? function:

eof? : (subr (naxeff (write 6I0) (read 6I0)) () bool)

FX also provides a set of type specific write subroutines which use the
current output-port.

write-bool :
(subr (maxeff (write 6I0) (read 6I0)) (bool) unit)

write-char :

a" (subr (maxeff (write 6I0) (read CI0)) (char) unit)
write-int :

(subr (maxeff (write 6I0) (read 6I0)) (int) unit)
*) write-float

(subr (maxeff (write 6IO) (read 6IO)) (float) unit)
write-string

(poly ((r region))
(subr (maxeff (write CI0) (read 6I0) (read r))

((string r))

unit))
write-symbol

(subr (maxeff (write IO) (read CI0)) (symbol) unit)
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Ch. 5. The FX Environment

In addition to these subroutines for specific data types, FX provides
general symbolic expression input and output via the sexp type:

(dletrec ((sexp (oneof ((s-unit unit)
(s-bool bool)

4.(s-int int)

(s-float float)
(u-char char)

(s-symbol symbol)

(s-string (string *-))
(s-vectorof (vectorof sexp G-))
(s-null null)

(s-pairof (pairof sexp sexp C-)))

sexp)

Two subroutines are provided to read a write sexp values:

read-sexp : (subr (maxeff (read CID) (write CI0)) () sexp)
write-sexp : (subr (maxeff (read GID) (write era)) (sexp) unit)

Every sexp value has a literal value which when written 6y write-sexp
can be read back in by read-sexp. The concrete syntax used fo, sexp literals
is the one used by FXfor unit, bool, int (in base 10), float, char, (string
a-) and null values, symbol literals are identifiers with the same name as
the symbol. vectorof literals are be enclosed between the delimiters #( and
). pairof literals are enclosed between the delimiters ( and ).

5.2 Signalling Errors

The error subroutine displays an optional message and signals a dynamic
error. A call to error does not return and is handled in an unspecified

manner.

error (poly ((r region))
(subr (read r) ((string r)) void))

L Note that there is no way to continue a computation once error is called.
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5.3 Top-Level

The FX top-level is a read-check-eval-print loop. As each expression is input
by the user, it is processed by each of the four stages of this loop:

o The reader reads the expression and checks its syntax.

o The type and effect system checks the type and the effect of the ex-
pression. If a static error is detected the user is informed and control
is returned to the reader which waits for another expression.

e The evaluator evaluates the expression and computes its result value.

& The printer outputs the result value (in an unspecified format), and
.calls the reader which waits for another expression.

The current state of the FX interpreter is defined by the definition en-
I vironment, which is a list of description definitions (bindings of description

variables to description values) and ordinary definitions (bindings of ordinary
variables to ordinary values).

Additional top-level definitions can be created by the def ine and pdef ine
top-level special forms, respectively:

- " A def ine special form binds (or rebinds) new values to top-level vari-
ables;

" A pdelfine special form binds new description values to description
variables.

The FX top-level process is structured as the analysis of a sequence of
definition blocks and ordinary expressions, which may be interleaved arbi-
trarily. A definition block is a sequence of pdeline and define expressions.
The FX type and effect system stays inactive while a definition block is being

entered. As soon as a definition block is complete it is evaluated in order to
update the current definition environment. A definition block is considered
to be complete either when an ordinary (value) expression is entered, or

.0, when the FX top-level detects that no pending undefined variables remain.
-sq When a definition block is complete it is evaluated in the following man-

'ner. First, every new description binding is added to the list of description
definitions. It is a static error to attempt to rebind a description variable
if the new description is not convertible to the old one. Second, every new
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ordinary binding is added to the list of ordinary definitions. It is a static
error to attempt to rebind an ordinary variable if the type of the new value
is not a subtype of the type of the old one.

If a static error occurs during the evaluation of a definition block, the
definition block is abandoned and the definition environment is restored to
its state before the present definition block was entered.

When ordinary expressions ezpj ... are entered after zero or more defi-
nition blocks, they are evaluated sequentially as if in the body of a pletrec
expression formed with the list of description definitions present in the up-
dated definition environment, and a letrec expression formed with the list
of ordinary definitions from the updated definition environment.

The initial definition environment includes all of the standard types and
variables defined in this manual.

i...
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def ine top-level expression

(define tr ezp)

or
(define (waer (varl Tezp, [Rexp1J) ... ) ezp1 eXP 2 ... )

The second form is equivalent to

(define var (lambda ((varl Texp, [Rczpl]) ... ) exp, CX2...)

and so, the following description only deals with the first form.
This special form is allowed only at the top-level of FX.

Semantics: The define special form extends the current set of ordinary
variable definitions which are visible at the top-level. Specifically var is
bound in the region a- to the value of the expression ezp. If var is already
bound, the previous binding is lost and the other ordinary definitions that
used the previous binding of var now refer to this new version.

If var is already bound, the type of ezp must be a subtype of the type of
wir.

At any given time, the set of defined ordinary variables is logically em-
bedded in an enclosing letrec form, so the restrictions imposed by this form
must be observed when using the define special form.

Examples:

;; An add2 function with a forward reference.

(define add2 (lambda ((x int))
(the pure int

(addi (addi x)))))

;; And now. the addl function.

(define (addl (x int))
(the pure int (+ x 1)))
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Idefine top-level expression

(pdefine d Dezp)
or

(pdefine (d (di Kexpl) ... Dezp)

The second form is equivalent to

(pdefine d (dlambda ((di Kezpl) ... ) Dezp))

and so, the following description will only deal with the first form.
This special form is allowed only at the top-level of FX.

Semantics: This special form extends the current set of description variable
definitions which are visible at the top-level; specifically, d is bound to the

4 description expression Dezp.
If d is already bound, Dezp must be convertible to the old value of d.
At any given time, the set of defined description variables is logically

embedded in an enclosing pletrec form, so the restrictions imposed by this
form must be observed when using the pdefine special form.

Example:

;; Define the list-of-int type.

(pdefine list-of-int (listof int *uy-lists))

,'
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5.4 Structuring programs

The FXuser may want to use different FXfiles to develop large FXprograms.
The following special forms provide the ability to deal with this kind of
incremental program development: load and compile.
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load top-level expression

(load atring-litera

The load special form is allowed only at the top-level of FX.

Semantics: The load special form enters the contents of the specified file
into FX as if they had been typed interactively at top-level, except in the
way that FX behaves if an error is signalled. If an error is signalled during a
load operation, the current definition block is abandoned and the definition
environment is restored to what it was before the current block; the top-level
is then restarted. load can be included in files that are loaded. The format
of the file name string is not specified.

Example:

;; Loading the init.fx file.

(load "psrg:>fx>inIt.fx")

110



* - compile top-level expression

(compile string-literal)

The compile special form is allowed only at the top-level of FX.

Semantics: The compile special form creates an optimized version of the
program in the specified file. This optimized version will be used the next
time the specified file is loaded. The compile form does not alter the defi-
nition environment. The format of the file name string is not specified.

Example:

;; Compile the init.fx file.

* (compile "psrg:>Ix>init.fx")

4%
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Appendix A

FX Syntax

This appendix gives the syntax of FX as a BNF grammar. For the purposes
of this grammar, id denotes an identifier, var a variable, integer a non-empty
sequence of digits and character a character.

KexpV = - Kind expressions
region I ef fect Itype
(dlfunc (Kezp ... ) Kezp)

Dezp = - Description expressions
Rexp I Eexp I Texp I HDeac

HDesc =- Higher order description expressions
GDesc
(dlaabda ((var Kezp) ... ) Dexp)

GDesc =- Generic description expressions

var

UHecDep.
(diet ((a ep . ep
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Rezp -Region expressions
GDeec
aid
(ruion Rezp Rezp ... )

Eexp =-Effect expressions
GDecc
pure
(alloc Retp)
(read Rezp)

4 (write Rezp)
(maxeff Eezp...)

TeXP=- Type expressions
GDeec
bool Ichar Ifloat I mt
null I symbol I unitl void
(subr Eexp (Tezp ...) Texp)
(poly ((var Kezp) ...) Tezp)
(ret Tezp Rezp)
(string Rczp)
(pairof Tezp Tezp Rezp)
(listof Tezp Rezp)
(vsubr Eexp Tczp Tezp)
(promise Eezp Tezp)
(uniqueof Tczp)
(vectorof Tezp Rezp)
(recordof ((var Tezp) ... ) Rezp)
(oneof ((var Tezp) (var Tezp) ... ) Rezp)

*TopLevel = - Top Level Value expressions
(def ine var cip)
(def ine (var (var Tezp (Rezp) ... ) ezp exp...)
(pdef ine var Derp)
(pdef ine (var (var Kexp) ...) Dezp)
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(load "character...")
(compile "character...")

ezp =-Value expressions
war
Literal
(ezp exp ...)
(and ..p ...)
(begin ezp ep...)
(cond (ezp ezp exp. .. )... .(else ezp exp...)
(delay ezp)
(do ((war ezp Iexp [Rezp 1]) ... ) (exp ezp ..p...) exp...)
(it ezP ezP ezp)
(lambda ((var Teip [Rexp]) ... ) ezp ,,p ...)

4,(let ((var ezp IRezp]) ... ) ezp p..)
(letrec ((var ezp [RexpI) ... ) exp ezp ...)
(let* ((war ezp [Rezpl )... ) ezp exp...)
(one Tezp war ezp)
(one-set I ezp war ezp)
(or ..p ... )
(plaubda ((var Kezp) ... ) ezp)

"pletre ((ar Dezp) ... ) ep xp...)
(plet*e ((ar Dezp)... ) ep .. p...

(proj ezp ep.)
(record ((var ..p)... ) [Rezp])
(record-set i ezp var ezp)

* (select ezp var)
(set I var ezp)
(tagcase var (var ezp ..p... ) (var ezp ezp..

(tagase(va[(else ezp ez..)j) .. )(repep

(tagase(warezp[Rezp]) (var exp exp..)(arepx..
[(else exp ezp . ..

(the [Eexpl Texp exp)
* (vlambda (var Texp [Rexpj) ezp exp...)
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Literal - Literal expressions

#u

[*Base] [Sign] integer
- (Sign] integer. integer (e [Sign] integer]

*\Char
"character. .. "

'id
(quote id)

Base =b o Id Ix

Sign =+ -

*Chatr character backspace Inewline Ipage space tab
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Appendix B

FX Semantics

This appendix describes the constructs and concepts that form the basis
of the FX language. In particular, we state the following claims: type
soundness, static typing, location invariance, untyped semantics, typeless
implementation, and effect soundness. The proofs are omitted.

To keep the presentation simple, many features not essential to the theory
behind FX have been omitted from this appendix. These include immutable

" regions, description functions, multiple function arguments, implicit begin
expressions (e.g. inside lambda), recursion, built-in types such as integers
and strings, data structuring types such as records and oneofs, I/O functions
and assignable variables.

B.1 Grammar

The grammar of the language described in this appendix is given below,
starting with kinds and proceeding to descriptions and ordinary expressions.

*i For the most part, this grammar generates the same language as that de-
scribed in the previous appendix. We reproduce an entire grammar here so
that we may simultaneously introduce some new notation and the simplifi-
cations alluded to above.

The meta-variable for each syntactic class is shown in parentheses. Meta-
variables in this appendix differ from those in the rest of the manual so that
the formal rules presented here have a more compact representation.

Kinds serve as the "types" of descriptions. There are three kinds, cor-
./i responding to the three k-'ids of descriptions - region, effect, and type

descriptions.
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Kind = - kinds (r)
region - kind of regions

P. effect - kind of effects
type - kind of types*5)

Descriptions serve to describe the types and effects of ordinary expres-
sions. We discuss the three kinds of descriptions - region, effect, and type
descriptions - in turn, but first we define the description constants and
variables.

Rconst (ri,r2 ... } - region constants (r)
Tconst = (unit, bool) - type constants (t)

*,/. Econst = (pure) - effect constants
Dvar {d,d,... } - description variables (d)

Region descriptions correspond to countably infinite sets of locations,
which we call regions. The runion of one or more region descriptions cor-
responds to the union of the corresponding sets of locations. The precise
meaning of "locations" is giwn on page 134.

Region = - region descriptions (p)

Rconst - region constant
Dvar - description variable
(runion Region+) - union of one or more regions

Effect descriptions correspond to the side-effects of ordinary expressions,
as expressed in terms of the allocating, reading, and writing of locations in
certain regions. The maxeff of zero or more effect descriptions corresponds
to the combination of the corresponding effects.

Effect - effect descriptions (c)
~~118 (

]LI



B.1. Grammar

Econst - effect constant
Dvar - description variable
(alloc Region) - allocate in a region
(read Region) - read from a given region
(write Region) - write to a given region
(maxeff Effect) - combine zero or more effects

Type descriptions correspond to sets of values, which we call types. For
example, the type constant unit corresponds to the set {#u) and the type
constant bool corresponds to the set {#t, #f). The precise meaning of "val-
ues" is given on page 121.

Type = - type descriptions (r)
Tconst - type constant

" Dvar - description variable
(subr Effect (Type) Type) - ordinary subroutines
(poly (Dvar Kind) Type) - polymorphic subroutines
(ref Type Region) - locations

The description (subr e (ri) r2) is a generalization of the type T1--+r2 in
the typed lambda-calculus. It corresponds to the set of ordinary subroutines
that, when applied to a value in rl, cause a side-effect of at most c and either
diverge or return a value whose type is a subtype of r2 . The term "subtype"
is defined on page 122.

The description (poly (d x) r) is a generalization of the type Vt.r in the
second-order typed lambda-calculus. It corresponds to the set of polymor-

0phic expressions that, when projected onto a description 6 of kind r, either
diverge or return a value whose type is at most r[b/d], without causing any
side-effects. The post-fix [6/d] denotes substitution of 6 for d, where bound
variables are renamed as needed to avoid capture.

The description (ref r p) is a generalization of the type ref r in pro-
gramming languages such as ML. It corresponds to the set of locations in
the region p that are intended for values whose type is a subtype of r.

The grammar for descriptions in general is obtained by combining the
region, effect, and type descriptions.
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Desc= - descriptions (6)
Region - region descriptions
Effect - effect descriptions
Type - type descriptions

Ordinary expressions serve to express programs and the resulting values.
We discuss the ordinary expressions below, but first we define the ordinary
constants and variables.

Unit = {#u} - the unit type
Boo] = {#t, #} - Booleans (b)
Var = {X1, X2,... } - ordinary variables (z)

The constants of the language are #u, ft, and #f.

Const = - ordinary constants (C)
Unit - the unit type
Boo] - the Booleans

The grammar for ordinary expressions in general is given below. There
are three general classes of ordinary expressions: expressions that derive
from the second-order typed lambda-calculus; expressions that deal with
evaluation order; and expressions that deal with side-effects. The first class
consists of constants and variables, ordinary abstraction and application, and
polymorphic abstraction and projection. The second class consists of expres-
sions for conditional and sequential evaluation. The third class consists of
expressions for asserting type and effect and for the allocating, reading, and
writing of locations.

ezp = - ordinary expressions (e)
Const - ordinary constants
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B.2. Free Variables and Constants

Var - ordinary variables
(lambda (Var Type) ezp) - ordinary abstraction
(ezp ezp) - ordinary application

(plambda (Dvar Kind) ezp) - polymorphic abstraction
(proj ezp Dese) - polymorphic application
(if ezp ezp ezp) - conditional evaluation
(begin ezp+) - sequential evaluation
(the Effect Type ezp) - effect/type assertion
(new Type Region ezp) - allocating a location
(get exp) - reading a location
(set exp ezp) - writing a location

Notice that new, get, and set are special forms here while they were
polymorphic subroutines in the main body of the manual. This allows ex-
planation of semantics involving new, get, and set without the complexity
of projecting them.

Certain ordinary expressions, such as applications, represent computa-
tions; other ordinary expressions, such as constants, do not exhibit any com-
putational behavior, and represent values.

Definition. An ordinary expression is a value iff it is a constant, a
lambda expression, or a plaubda expression. We use Val to denote the set
of values and v to denote individual values. In other words,

Val= - values (v)
Const - ordinary constant

(lambda (Var Type) ezp) - ordinary abstraction
(plambda (Dvar Kind) ezp) - polymorphic abstraction

B.2 Free Variables and Constants

Free and bound variables are defined as in the second-order typed lambda-
calculus; in particular, lambda binds ordinary variables, and plambda and
poly bind description variables. This is formalized in the following defini-
tions.
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Definition. The free ordinary variables of an ordinary expression are
given by the function FV : ezp --+ PowerSet(Var).

Definition. The free description variables of a description expression
are given by the function FDV : Desc --+ Powerset(Dvar).

Definition. The free description variables of an ordinary expression are
given by the function FDV : ezp - PowerSet(Dvar).

We adopt the usual notions of alpha-renaming and beta-substitution for
bound variables. We use the notation 1 [62 /d], e[6/d] and eI[e2 /z] to indicate
beta-substitution, where bound variables are renamed as needed to avoid
capture. We adopt the usual definition of closed descriptions and ordinary
expressions:

Definition. A description b is closed iff it has no free description vari-
ables, i.e. iff FDV(b) = 0.

Definition. An ordinary expression e is closed iff it has no free ordinary
variables and no free description variables, i.e. iff FV(e) = 4 A FDV(e) = ,.

It is convenient to define the free region constants of a description,
FRC(b), and of an ordinary expression, FRC(e). Since region constants
cannot be bound, the definition of FRC and FRC is trivial: all the region
constants that occur in a description or ordinary expression are free.

Definition. The free region constants of a description are given by the
function FRC : Desc --+ Poerset(Rconst).

Definition. The free region constants of an ordinary expression are
given by the function FRC : czp -+ PowerSet(Rconst).

B.3 Description Conversion and Inclusion

* In this section, we define the conversion and inclusion relations on descrip-
tions. The conversion relation (L-) is an equivalence relation that partitions
Desc into sets of descriptions that correspond to the same underlying sets
of locations, effects, or values. Two descriptions can be convertible only ifi they have the same kind.

The inclusion relation (9) is a partial order that relates pairs of descrip-
tions that correspond to sets such that one is a subset of the other. Thus,

one region is a subregion of another if the set of locations corresponding to
the former is a subset of the set of locations corresponding to the latter. This
rule applies to effects and types as well. Two descriptions can be related only
if they have the same kind; it follows that the description inclusion relation
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is simply a combination of the independent subregion, subeffect, and sub-
type relations. These inclusion relations are defined below. The conversion
relation then follows from the definition of inclusion:

61L62 4* (6 1 C_ ^ (616 2)

The conversion and inclusion relations are determined completely by the
correspondence between descriptions and sets of locations, effects or values
respectively.

Region Descriptions

As previously mentioned, a region description corresponds to a countably
infinite set of locations. We define the inclusion relation on regions to corre-
spond to set inclusion on these sets. In the language defined in this appendix
and in full FX, there is no aliasing between region constants or region vari-
ables. As a result, we can assume that individual region constants and
region variables correspond to disjoint sets of locations. This leads us to the
definition of region inclusion given below.

Definition. The region description P, is included in the region descrip-
tion P2, P1 C P2, if FPRC(pl) _ FRC(p2 ) A FDV(p1 ) _ FDV(p 2 ).

Comment. Since every region description is built up out of region con-
stants and region variables, the set of region descriptions modulo conversion
is isomorphic to PowerSet(Rconst U Dvar), the set of all possible combina-
tions of region constants and region variables. It follows that the region
descriptions modulo conversion form a Boolean lattice.

Effect Descriptions

* As previously mentioned, an effect description corresponds to a set of alloc,
read, and write effects on certain regions. We define the inclusion relation
on effects to correspond to set inclusion on these sets of primitive effects.
Note that under this interpretation, the effect constructors alloc, read, and
write distribute over the region constructor rumion: for example, the effect
description (alloc (runion rl r2)) corresponds to the same effect as the
description (maxeff (alloc r7) (alloc r2)). This leads us to the definition
of effect inclusion given below.

Definition. The inclusion relation 1- on effect descriptions is the par-
tial order generated by the inference rules given below, where we identify
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descriptions that are equal modulo the distributive laws. We say that C is a
subeffect of e iff c C c.

P E P'
(alloc p) E (alloc p')
(read p) E (read p')

(write p) E (write p')

c, E c for all 1 < i < n

(maxeft fi c ... en~) i

c E for some 1 <i < n
e C: (saxefl £1 ... .)

In other words, the effect constructors alloc, read, and write are mono-
tonic with respect to description inclusion, and the effect constructor maxef f
acts as the n-ary least upper bound operation.

Comment. Since every effect description is built up out of primitive
effect descriptions (of the form (alloc p), (read p) or (write p)) and effect
variables, the set of effect descriptions modulo conversion is isomorphic to
Poeret((alloc, read, write) x (Rconst U Dvar)) U Dvar), the set of all
possible combinations of primitive effects and effect variables. It follows that
the effect descriptions modulo conversion form a Boolean lattice.

Type Descriptions

As previously mentioned, a type description corresponds to a set of values.
We define the inclusion relation on types to correspond to set inclusion on

these sets of values.

Definition. The inclusion relation C on type descriptions is the partial
order generated by the inference rules below, where we identify descriptions

O, that are equal modulo the distributive laws and alpha-renaming. We say
that r is a subtype of r' iff r C r'.

The type inclusion inference rule for the type constructor subr reflects
the fact that subr is monotonic in its effect and return type components,
but anti-monotonic in its parameter type component. This follows from its
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interpretation as a generalization of the type constructor -, in the typed
lambda-calculus.

cE c' A " -1r' A r2 E r2'

(subr c (ri) r2) C (subr e (rp) r2)

The rule for the type constructor poly reflects the fact that poly is
monotonic in its return type component

i (poly (d re) r) E (poly (d jc) r')

The rule for the type constructor ref reflects the fact that ref is mono-
tonic in its region component, but neither monotonic nor anti-monotonic in
its type component. As for the region component, monotonicity follows from
the fact that the inclusion relation on region descriptions corresponds to set
inclusion on the underlying sets of locations. As for the type component,
the rule reflects the fact that in the presence of side-effects, neither r E r'
nor r _D r' implies (ref r p) _ (ref r' p).

- pe A r t- r

(ref r p) C (ref r' p')

To understand why ret is not monotonic in its type component, consider
this. Computationally, a location is equivalent to a pair of subroutines, one

for reading and one for writing. Thus, the type (ref r p) is in some sense
equivalent to a tuple of two types:

(subr (read p) (unit) r)
* and

(subr (write p) (r) unit)

Since r appears as the return type in the first type, (ref r p) is a subtype of

(ref r' p) only if r C r'. Yet, since r appears as the parameter type in the

second type, (ref r p) is a subtype of (ref r' p) only if r _1 r'. It follows
that (ref r p) is neither monotonic nor anti-monotonic in r.

Comment. The type descriptions modulo conversion do not form a lat-
tice, because the set is not closed under U and fl; for example, the type de-
scriptions bool and (ref bool ri) have neither an upper nor a lower bound.
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B.4 Kind, Type, and Effect Inference

*Every well-formed description has a kind, which is one of region, effect
or type. Similarly, every well-formed ordinary expression has both a type
and an effect description. In this section we present a set of axioms and
inference rules for determining the kind of a description and the type and
effect descriptions of an ordinary expression.

Kinds

,. Since a description may have free description variables, the kind of a de-
scription is defined in the context of a kind assignment, which is a partial
function with signature Dvar -. Kind that maps description variables to
their kinds. We use Kas to denote the set of kind assignments and B to
denote individual kind assignments. We use the notation f[z '-* y] to denote
the function similar to f except that it maps x to y. The relation has kind,
or , on (Desc x Kas) x Kind gives the kind, if any, of a tuple consisting
of a description and a kind assignment.

Definition. The relation has kind is the least relation consistent with
the axioms and inference rules below. The axioms state that every region

.. constant has kind region, every type constant has kind type, and every
%description variable d in the domain of B has kind B(d).

(r,B) :: region

(t,B) :: type
96. (d, B) :-B(d)

The kind inference rule for region descriptions states that the runion of
one or more descriptions of kind region also has kind region.

(pi,B) ::region for all <i<n
((runion p.. ), ::-region

There are two kind inference rules for effect descriptions. The first rule
states that if p has kind region, then the effect descriptions (alloc p),
(read p) and (write p) all have kind effect.

(p, B) :: region

,.'. ((alloc p), B) :: effect
((read p),B) :: effect

((write p), B) : effect
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The second rule states that the maxeff of zero or more descriptions of kind
effect also has kind effect. In particular, the effect description (maxeff)
or pure has kind effect.

(i, B) :: effect for all I < i < n

((maxeff C1 ... Cn), B) :: effect

Finally, there are three kind inference rules for type descriptions. The
first two rules are direct adaptations of the corresponding rules in the second-
order typed lambda-calculus, changed only to handle the effect component
of the subr and poly type descriptions.

(e, B) :: effect
(ri,B) :: type
(r2 ,B) :: type

((aubr c (TI) r2), B) :: type

(r, B[d j-c]) :: type

(C, B[d '-* cJ) :: effect

((poly (d ix) r), B) :: type

The rule for ref type descriptions simply states that if p has kind ref
and r has kind type, then (ref r p) has kind type.

(p,B) :: region
(r, B) :: type

((ref r p), B) :: type

* Definition. A tuple (6, B) is well-formed, WY((6, B)), iff it has a kind,
i.e. iff (6, B) :: x for some kind K.

Definition. A closed description 6 is well-formed, VY1(6), iff it has a
kind under the empty kind assignment, i.e. iff (,) :: x for some K. If 6
is closed and well-formed and (6,4) r., we write 6 :: K and say that 6 has

0,* kind x.

Fact. If the tuple (6, B) is well-formed, then its kind is unique; in other
words, if (6, B) :: K1 and (6, B) :: r2 then K - 2. It follows that the

relation has kind is a partial function.
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The Types and Effects of Expressions

In this section we give a set of axioms and rules for determining the type
and effect description of an ordinary expression. Because an ordinary ex-
pression may have free ordinary and description variables, its type and effect
description are defined in the context of both a kind assignment and a type
assignment, which is a partial function with signature Var -+ Type that
maps ordinary variables to their type descriptions. We use Tas to denote
the set of type assignments and A to denote individual type assignments.

The relation has type, or : , on (ezp x Tas x Kas) x Type gives the type
description, if any, of a tuple (e, A, B) consisting of an ordinary expression,
a t)? e assignment, and a kind assignment. Likewise, the relation has effect,
or ! , on (ezp x Tas x Kas) x Effect gives the (unmasked) effect description,
if any, of such a tuple. Effect masking is described below.

Definition. The relations has type and has effect are the least relations
consistent with the axioms and inference rules below.

The type axioms, below, state that #u has type unit; the Booleans #t
and of have type bool; and every ordinary variable x in the domain of A
has type A().

(#u,A,B) : unit
(b,A,B) : boo
(z, A, B) A(x)

The effect axioms, below, state that every ordinary constant or variable
and every abstraction expression, whether ordinary or polymorphic, has ef-
fect pure, regardless of the type or kind assignment.

(v, A, B) I pure
(z, A, B) I pure

The type inference rule for ordinary abstraction is a generalization of the

corresponding rule in the typed lambda-calculus. The main difference is that
the effect description of the body of the lambda expression is incorporated
into the type description of the expression itself. This reflects the fact that
the side-effects (if any) of the body do not take place when the lambda
expression is evaluated, but when the subroutine is applied. Note that the
effect description of a lambda expression is always pure, by the corresponding
effect axiom.

(e, AIz- ri], B) I e

(e, AIX 1 , B) r2
((lambda (z ri) e), A, B) : (subr c (rl) r2)
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The rule for application is a generalization of the corresponding rule in
the typed lambda-calculus. The main difference is that the effect descrip-
tion embedded in the type of the subroutine is incorporated into the effect
description of the application as a whole. This reflects the fact that the side-
effects (if any) of the body of the subroutine take place when the subroutine
is applied. Note that the type description of the actual parameter need not
match that of the formal parameter exactly, but must be included in it.

(ei,A,B) : (subr c (rl) r2)

(e2, A,B) : TA r r,
(el, A,B) I el
(e2,A,B) 1 C2

((el e2), A, B) : r2
((el e2),A, B) I (axef f c C2 C)

The rule for polymorphic abstraction is a generalization of the corre-
sponding rule in the second-order typed lambda-calculus. The main differ-
ence is that the effect description of the body of the plambda expression
must be pure. Note that this rule ensures that the free description variables
of the types of the free variables of the body are not captured by the bound
description variable. Also, the effect description of a plambda expression is
always pure, by the corresponding effect axiom.

(e, A, B[d. ic]) r
(e, A, B[d '-4x]) Ipure

" zE FV(e) = d FDV(A(z))

((plambda (d r) e), A, B) (poly (d K) r)

The rule for projection is a generalization of the corresponding rule in
the second-order typed lambda-calculus. This rule also enforces the anti-
aliasing provision of the language: it ensures that if the actual parameter is
a region description, then the expression as a whole is not well-typed unless

V the actual parameter is disjoint from the free region variables and region

constants of the type of the operator. This ensures that the application does
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not create aliasing between region constants and/or region variables.

(e,A,B) r = (poly (d jc) r')
(e, A, B) .c
(6, B) ::

= region fFRC(r) n FRC(S) =.0
t FDV(r) n FDV (6) =

((proj e 6), A, B) : r'[6/dl
((proj e 6), A, B) c e

The rule for conditional expressions ensures that the first subexpression
has type description bool, and that the remaining two subexpressions have

* @type descriptions whose maximum exists. When this is the case, the type
description of the if expression is this maximum, and its effect description is
the maximum bound of the effect descriptions of its subexpressions, reflecting
the fact that evaluating an if expression involves evaluating some subset of
its subexpressions.

(el, A, B) : bool (e, A, B) Ii
(e2 , A, B) : r2 (e2, A, B) 1 c2
(es, A, B) : r3 (e, A, B) I c3

r 2 Ur 3 =r A (r=r2 V r =rs)

((if el e2 es),A,>B) r

((if el e2 es), A, B) I (naxeff c, £2 s)

The rule for sequencing ordinary expressions is remarkably simple: pro-
vided that each subexpression has a type and effect description, the type
description of a begin expression is the same as that of the last subex-
prossion, and the effect description is the least upper bound of the effect
descriptions of the subexpressions.

(ei, A,B) ri for alll<i<n
(ei,A,B) 4 Ei for alll<i<n

'O ((begin el ... en), A, B) :rn

((begin el... en), A, B) I (maxeff C1 ... En)

The rule for effect/type assertion allows an expression of some particular
effect and type to be regarded as though it had a larger effect and type.
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(r',B) type
(e, B) :: effect

(e, A, B) : r
(e,A, B) I e
r C:r' A C C,

((the e' r' e),A, B) r'
((the ' r' e),A,B) ! I

The remaining three rules deal with the expressions for allocating, read-
ing, and writing locations. The rule for the new expression can be read as
follows: provided that p has kind region, r has kind type, and e has a
type and effect description, and provided that the type description of e is
included in r, the type description of the expression as a whole is (ref r p),
and the effect description of the expression is the least upper bound of the
effect description of e and the primitive effect description (alloc p).

(p,B) :: region
(r, B) :: type

(e, A, B) : r' A r'r
N (e,A,B) I c

, ((new r p e),A,B) (ref r p)
((new r p e), A, B) I (maxeff c (alloc p))

The rule for the get expression can be read as follows: if the type de-

scription of e is (ref r p), then the type description of the expression as a
'whole is r, and its effect description is the least upper bound of the effect

description of e and the primitive effect description (read p).

(e, A, B) (ref r p)

7'.(e, A, B) !e
((get e), A, B) : r
((get e), A, B) ! (maxeff c (read p))

The rule for the set expression can be read as follows: provided that
the type description of el is (ref r p) such that the type description of e2 is
included in r, the type description of the expression as a whole is unit, and
its effect description is the least upper bound of the effect descriptions of el
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and e2 and the primitive effect description (write p).

(el, AB) : (ref r p)
(e2 , A, B) : rA A r'Er
(el, A, B) ! el
(e2,A,B) 1 C2

((set el e2), A, B) unit

((set e1 e2), A, B) ! (aaxeff C1 C2 (write p))

Definition. A tuple (e, A, B) is well-formed, WY((e, A, B)), iff it has a
type description, i.e. iff (e, A, B) r for some r.

Definition. A closed expression e is well-formed, Wir(e), iff it has a type
4 description under the empty type and kind assignments, i.e. iff (e, 4, ) : r

for some r. If e is closed and well-formed and (e, 4, 4') : r, we write e : r and
say that e has type r; similarly, if e is closed and well-formed and (e, 4', 4') E,

we will write e ! c and say that e has effect c.

% Fact. Every well-formed tuple has an effect description; in other words,
if (e,A, B) : r for some r then (e,A,B) I c for some c.

Fact. If the tuple (e, A, B) is well-formed, then its type and effect
descriptions are themselves well-formed and of kind type and effect re-
spectively, provided that the type descriptions in A of the free variables
of e are well-formed. In other words, if (A(x), B) is well-formed for each
z E FV(e), then if (e,A,B) : r and (e,A,B) I e then (r,B) :: type and
(e, B) :: effect.

Fact. If the tuple (e, A, B) is well-formed, then its type and effect de-
scriptions are unique modulo conversion; in other words, if (e, A, B) : Ti and

, (e, A, B) : r2 then rl -_ r2 , and likewise if (e, A, B) ! c, and (e, A, B) ! C2
then c, S- C2. It follows that the relations has type and has effect are partial

* functions (modulo description conversion).

Effect Masking

Effects that are not observable outside of a given expression can be masked
by the type and effect system. To this end, all expressions are subjected to
effect masking according to the following rule:

If the expression has effects on some region identifier d, and d

does not appear free in the type of any free variable of the expres-
sion, then any read or write effect on d is masked; furthermore,
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if d does not appear free in the type of the expression, then any
alloc effect on d is masked too.

In order to define effect masking formally, we introduce the pseudo-region
o. Conceptually, o corresponds to an empty region, i.e. a region to which
no locations belong. Thus, (runion o p) is convertible with p (for all p),
and the effects (alloc o), (read o) and (write o) are convertible with pure.
The pseudo-region o can be regarded as the bottom of the region lattice. We
can now give the formal effect masking inference rules:

(e,A,B) r
(e, A, B) I

(d,B) :: region
z EFMe) d V FV(A(x))

d € FV(r)

(e, A, B) I ctold]

(e, A, B) :
(e, A, B) I
(d,B) :: region

z E FV(e) d 5 FV(A(x))

(e, A, B) I ( .axef f [o1d (alloc d))

Due to effect masking, an expression may have many effects: one that has not
benefited from effect masking, one in which nothing remains to be masked,
and any number that are somewhere in between. To deal with effect mask-
ing, any formula of the form (e, A, B) I c in a premise of a type and effect
inference rule must be interpreted as meaning that c is the least effect of
(e, A, B). With this interpretation, every well-formed tuple (e, A, B) has a
type description and a least effect description that are unique modulo con-
version.UB.5 Standard Semantics

The standard semantics of the language are based on the standard rewrite
rules for the second-order typed lambda-calculus; in particular, the seman-
tics of application as well as projection are expressed in terms of beta-
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"A to values. To avoid the complications that arise when a computation runs
out of unused locations, we define a store to be a finite function with signa-
ture Loc - Val that maps locations to values. Since the number of locations
is infinite and every finite computation allocates only a finite number of lo-
cations, this definition ensures that a computation never runs out of unused
locations. We use Store to denote the P'et of stores and a to denote individual
stores.

Because of side-effects, the order of subexpression evaluation is crucial to
the semantics of the language. As a result, the rewrite rules are directional
- hence, from now on, we use the term reduction rather than rewriting.

To avoid over-specification, we have defined the standard semantics so
that new locations, when needed, are chosen nondeterministically. This gives
the language implementation a great deal of flexibility, which is essential to
permit such optimizations as code motion, common subexpresuion elimina-
tion, and dead code elimination.

Locations

Before we can describe the semantics, we must define what we mean by
locations. Formally, locations are a countably infinite set of constants:

Loc { 1 ,12 ,... } - locations (1)

Const = ... - ordinary constants (c)

Loc - the locations

A location can be tagged with a region description and a type description.
The region tag of a location indicates to what region the location belongs,
and the type tag of a location indicates what types of values the location may
contain. Specifically, a location tagged with a region description p belongs
to the region p, and a location tagged with a type description r may only
contain values whose type is a subtype of r. These descriptions ought to be
closed; tags that contain free description variables are meaningless.

We write R(!) for the region tag of the location I and T(I) for its type
tag. Moreover, we write I.,, to indicate that R(I,,,,) = p and T(,:r.
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Every closed region description p corresponds to a nonempty set of region
constants, namely FRC(p). If p is a region constant, then the location I..
belongs to the region corresponding to that region constant. If p is a runion
of several region constants, then the location 1,,, belongs to the union of the
corresponding regions. This situation reflects either uncertainty or indiffer-
ence about the region constant to which the location actually belongs.

It is convenient to define the free locations of an ordinary expression,
FL(e). Since locations are constants, the definition of FL is trivial: all the
locations that occur in an ordinary expression are free.

Definition. The free locations of an ordinary expression are given by
the function FL : ezp -- PowerSet(LOC).

Since locations are constants and therefore ordinary expressions, we must
define their free ordinary and description variables, their free region con-
stants, their types, and their effects. The first few are easy: since locations
are constants, they have neither free ordinary variables nor free description
variables. However, because of its region and type tag, a location may have
free region constants:

FRC(1,,,7 ) = FRC(p) U FRC(r)

Because locations are constants, their effect is pure. Finally, the type of a
location is a ref type whose region and type parameters are equal to the
region and type tags of the location:

(I,,, A, B) : (ref r p)

* Stores and States
The state of a computation consists of two components: an ordinary expres-
sion, which indicates the computation that remains to be performed, and a
store, which maps locations to values.

Definition. A store is a finite function a : Loc --+ Val that maps loca-
. tions to values. We use Store to denote the set of stores and o to denote

individual stores.

Definition. A state is a tuple (e,o') E (ezp x Store). We use State to
denote the set of states and 6 to denote individual states.
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Reduction

The reduction relation 4. on (State x State) is defined by a set of reduction
axioms and a set of reduction inference rules. The reduction axioms show
how to reduce an ordinary expression when certain of its subexpressions have
been reduced to values; the reduction inference rules show how to reduce
an ordinary expression to which none of the reduction axioms applies by
reducing one of its subexpressions.

A value cannot be reduced; in other words, for all v and a there is no
9 such that (v, a) 42 0. We make extensive use of this fact to ensure that
subexpressions are evaluated in left-to-right applicative order. For example,
the reduction axiom for ordinary application (shown below) is applicable
only when the operator is a lambda expression, which is a value, and the
operand is a value as well. This technique is used throughout to keep the
reduction axioms and inference rules from being invoked prematurely.

The first two axioms, which deal with application and projection, are
adapted directly from the second-order typed lambda calculus. Note that
the store is not affected.

(((lambda (z r) e) v), a) .(efv/zJ, a)
((proj (plambda (d ic) e) 6),a) (e[6/d],a)

The axiom for ordinary application may entail duplication of the actual
parameter. This does not cause any problems, despite the possibility of
side-effects, because the actual parameter is a value, which cannot be further
reduced.

The next set of axioms, which deal with conditional and sequential eval-
uation, should be more or less self-explanatory.

((it #t e2 e3),o') (e2,o)
l ql ((b# ei v),a) .(v, a)

((begin v el... e.),a) ( ((begin el ... e.),o) (n> 0)
((the e r v), a) (v, a)

The remaining axioms deal with the allocating, reading, and writing of
locations. In what follows, we use the notation o[1 '-. v] to denote the

store that is identical to a except that it maps I to v, while simultaneously
expressing the fact that I is not bound in o. We use the symbol "-" to denote
an undefined value, so that all '-+ -] denotes the store a while expressing
the fact that I is not bound in a.
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The axiom for the new expression can be read as follows. To reduce the
expression (new r p v), choose any location I of type r in the region p that
is not bound in the store. By the definition of a store, such a location exists
iff r and p are closed. Once a suitable location I has been chosen, simply
bind I to v in the store, and replace the expression by the value I.

((new r p v),[,,, I-* -1) 4 (l,o[l 1-* v])

This axiom represents a non-deterministic reduction: unlike the other
axioms, this axiom permits a state to reduce (in one step) to a countably

A'. infinite number of states, differing only in their choice of the new location.
The course of a computation is not affected by the choice of new locations.

To reduce the expression (get I), where I is bound to v in the store,
simply replace the expression by the value v.

((get 1), a [1 '- v]) =;. (v, aj - v])

To reduce the expression (set I v), where I is bound in the store, simply
bind I to v in the store and replace the expression by the value #u.

((set I v),o[ -. v') 4. (#*u,o[ - v])
This concludes the set of reduction axioms. Note that each of these

axioms is applicable only when certain subexpressions of the outermost or-
dinary expression are values. The reduction inference rules, which are given~below, show how to reduce an ordinary expression to which none of the

reduction axioms applies by reducing one of its subexpressions. There are
quite a few of these rules: two for application (one for the operator subex-
pression and one for the operand), one for projection (since the operand is a

description, which does not need to be reduced), one each for if, begin, and
the one each for new and get, and two for set. The rules are all structured

', ' so that subexpressions are evaluated in left-to-right, applicative order.

• o,,((Cl C2), a) 49 ((e' e2),oa')
s a b(i2, 0) e d , o)

ii((V1 C2), 0) ((V1 C2), 0")
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((pro j e 6), o) 4 ((pro j e' 6), a,)

((begin el e2 . ... e.~), 0') ((begin e', e2 .. . ), ol

((the E r e), 0) ! ((the e r e'),ora)

((new r p e), a)2~ ((new r p e) a

((get e), o)~ ((get el), a)

*(e2, a) (e2,o0)

Stuck States

Definition. A state (e, a) is stuck iff e is not a value and the state cannot
'0be reduced, i.e. iff e 0 Val and there is no 9 such that (e,oa) a?:, 9.

A comparison of the grammar of ordinary expressions on the one hand
and the reduction axioms on the other hand yields a list of the different
sorts of stuck states. If the state (e, a) is stuck, then either e contains a
subexpression that is stuck, or e is one of the following:
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- a variable

- (Vl v2 ) where v, is not an ordinary subroutine

- (proj v 6) where v is not a polymorphic value

- (if v e2 C3 ) where v is not a Boolean

- (new r p v) where p and r are not closed and of kind region and type
respectively

- (get v) where v is not a location

S- (get 1) where I is not bound in the store

- (net v, v2) where v, is not a location

- (set I v) where I is not bound in the store

These expressions can be divided into various categories: attempts to use
undeclared variables, attempts to use uninitialized locations, type errors, and
kind errors.

Fact. If the state (e,a) is stuck, then e must either be ill-formed or
contain some location whose contents is either undefined or of the wrong
type.

In the next section, we show that reduction of a well-formed state never
gets stuck. In particular, this implies that type checking prevents run-time
type errors and attempts to use uninitialized locations.

B.6 Types Revisited

In this section we present several properties of the language that have to
do with types. We begin by generalizing the notion of well-formed ordinary
expression to that of a well-formed state. We can then verify that a well-

- formed state is not stuck. Moreover, we can prove that reduction of a well-
formed state yields another well-formed state whose type and effect are at
most those of the original state. Finally, we show that reduction of a well-
formed state never gets stuck. The results of this section do not deal with
effect masking.
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Type Soundness

In this section we prove that reduction of a well-formed state yields another
well-formed state and preserves or decreases the type and effect descriptions
of the state. As an intermediate step, we introduce the notion of a well-
formed store. Informally, a store is well-formed iff all the values in the
store are well-formed and are of the right type. More formally, we have the
following definitions.

Definition. A store is well-formed, Wr(a), iff every value in the store
is well-formed and has a type description that is included in the type of its
location. In other words,

W(Or(10,t) = v =v v : r'Ar' _ r)

We also introduce the notion of a consistent state. Informally, a state is
consistent iff all the locations that occur in the state are bound in its store
component.

Definition. A location I occurs in a store a iff either a(l) = v for some
v, or I occurs in a value o(P') for some P. The locations that occur in a store
are given by the function FLg,,, which is formally defined below.

FL.tor(') = U ({}U FL(a'(I)))
IEDomamn(o)

Definition. A location I occurs in a state (e, a) iff it occurs in the
expression component e or the store component a,. The locations that occur
in a state are given by the function FL.g.t., which is formally defined below.

. FL.at.o((e,a)) = FL(e)U FL~j 1.o.(a)

'- Definition. A state is consistent, Cona((e,oa)), iff every location that

occurs in the state is bound in the store, i.e. iff I E FL((e, a)) implies that
a (1) = v for some v.

We can now define what constitutes a well-formed state.

Definition. A state (e, o) is well-formed, WY((e, )), iff it is consistent

and e and a are both well-formed. In other words,

((e,oa)) t: Cons((eor)) A Y(e) A WY(or)

140



B. 7. Effects Revisited

If (e, o) is well-formed and e : r, we write (e, o) : r and say that (e, o)
has type r; similarly, if (e, ) is well-formed and e I c, we write (e, o) ! c and
say that (e, o) has effect c.

Since a program, by definition, contains no locations, the state (e, 0) is
well-formed for any well-formed program e.

We can now express the type soundness claim. It is a generalization of the
type soundness theorem (or subject reduction lemma) of the second-order
typed lambda-calculus, which states that reduction of a well-typed ordinary
expression yields another well-typed ordinary expression of the same type.

The claim presented here is more general than the type soundness theo-
rem of the lambda-calculus in three respects: side-effects, description inclu-
sion, and effect descriptions. To deal with side-effects, the claim has been
generalized from ordinary expressions to states. To deal with description in-
clusion, the claim has been relaxed so that the reduction of a state of type r
may yield a state of any type r' C r. Finally, to deal with effect descriptions,

i. the following claim about effect descriptions has been added: the reduction
of a state with effect c must yield a state of any effect ' C c.

Claim: (Type Soundness) Reduction of a well-formed state yields an-
other well-formed state, preserves or decreases the type and effect descrip-
tions of the state, and preserves or increases the set of locations bound in
the store.

e: r •: rwhere r ' C r
e C e !e'where Ee

(e, 0') : (C$ , 0" Domain(O!') o Dnmain()

Lemma: A well-formed state is not stuck.
Corollary: (Static Typing) Reduction of a well-formed state never gets

*stuck; in particular, reduction of a well-formed state never encounters a type
error, a kind error, or an uninitialized location.

B.7 Effects Revisited

In this section we present several properties of the language that have to
do with effects. The main property we show is that the actual side-effect

of reducing a well-formed state is equal to at most the syntactic side-effect
of the original state. This property forms the basis for syntactic side-effect
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analysis using the effect system. The results of this section do not deal with
effect masking.

Definition. For all 0 and 0' such that 0 : . 0', let

" A(0, 0') denote the location(s) allocated in the reduction step 0 = 0'

" i(O, 0') denote the location(s) read in the reduction step 0 = 0'

" V (0, 0') denote the location(s) written in the reduction step 0 . 0'

Claim. (Effect Soundness) Reduction of a well-formed state allocates,
reads, and writes only locations in the regions specified by its effect. In other
words, if 0 9. 0' and 0 ! c where

e (maxef (alloc PA) (read pR) (write pw))

then
A(e,0') £ PA

R (0 1 0) £ PR

Because reduction preserves or reduces the effect of a state, this claim

generalizes immediately to 0 : * 0'.

Effect soundness means that the syntactic effect descriptions of the ordi-
nary expressions that constitute a program are a conservative approximation
of their actual effects. It follows that this syntactic effect information can be
used to identify, at compile time, ordinary expressions that can be memoized
and ordinary expressions that can be evaluated concurrently.

Effect Masking

In the presence of effect masking, the effect soundness property reads as
follows:

Proposition (revised). (Effect Soundness) Reduction of an expression
in a well-formed state allocates, reads, and writes only locations that can be
reached through the regions specified by its effect and/or through regions
that are accessible only within the expression.
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char, 54 effect, 17
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char-alphabetic?, 55 current-input-port, 102
char-ci>0, 55 current-output-port, 102
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extended, xii meta-notation, 13
white space, xii Description Application, 24

close-input-port, 102 Description inclusion. See Inclu-
close-output-port, 102 sion
Closure, 34 Descriptions, 13
Comment, xiii general, 22
CommonLISP, 11, 70 dfunc, 12

* compile, 111 Digit, xii
Compound expression, 31 Distributive property, 18
cond,91 dlambda, 13,23

* cons, 64 dlet, 92
Constants dlet*, 93

builtin value, 31 dletrec, 25
0, kind, 12 do, 94

region, 14

type, 19 Effect, 12, 16
Constructor, 12 applications of, viii
Constructors constructors, 17
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examples of, 2 get, 47, 62
latent, 2, 34, 71
masking, 30 Has effect, 30
meta-notation, 16 Has kind, 12
simple, 16 Has type, 30

else, 85 hash, 61
eof?, 103 Hexadecimal, 51
eq?, 63, 68
equal? Identifier, xiii

non-existence of, 68 reserved, xiii
equiv?, 51 if, 45
error, 104 Immutable
Errors data structure, 3

Dynamic, xii region, 14, 17, 31
Static, xii Implicit projection, 41

Eta-conversion, 29 examples of, 5
exp, 54 Inclusion, 26-29

on descriptions, 26
File system, 101 on effects, 26f
fl*, 53 on general description, 28f
fl<, 53 on regions, 26
fl>,53 on types, 27f
fl>=, 53 input-port, 101
fl<-, 53 int, 51
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fl-,53 int->float, 54
f1/, 53 Interconvertible, 26
fl=, 53 Interference, 13, 16, 30

* flabs, 53 Interning
Flattening of symbols, 61

of effects, 18
of regions, 15 Kernel, 11

float, 52 Kind, 12
floor, 54 constants, 12

0. for-each, 69 constructors, 12
force:, 75 expressions, 11
FORTRAN, 53

Free variable, 31 lambda, 31, 34

Lambda abstraction, 34
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Latent effect, 34, 71 newline, 54
examples of, 2 not?, 51

Least upper bound, 26 Notation, xi
length, 67 null, 64, 65, 66
let. 96 null?, 64, 66
let*, 97 Number, xiii
letrec, 31, 37, 106, 107
Letter, xii Observable effects, 16

list, 67 Octal, 51

list->string,69 one, 84

list->vector,77 one-set,87

list-ret, 67 oneof, 82, 83

list-tail, 67 open-input-file, 102

listof, 66 open-output-file, 102

Lists or, 51,98

functions on, 64 or?, 51

Literal, xii, 30 Ordering of characters, 55
load, 110 Ordinary expression. See Value ex-
Location, 13 pression
log, 54 Ordinary expressions, 11

Ordinary variable, 31
MACLISP, 70 output-port, 101
mai&e-string, 56

make-vector, 75 page, 54

map, 69 pairof, 65, 66

maxeff, 17, 18, 26 pdefine, 105, 108

Maximum, 26 plambda, 39
member, 68 plet, 43

Memoization, viii, 75 plet*, 99
memq, 67 pletrec, 44, 106,108

Meta-notation poly, 21

for descriptions, 13 Polymorphism
for effects, 16 examples of, 5
for regions, 14 Port, 101
for types, 19 proj, 40

ML, 119 promise, 73
modulo, 52 Pure, 17, 18, 31

examples of, 2

new, 47, 62
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quote, 59, 60 space, 54
Sqrt, 54

read, 16 Standard types, 49
read-bool, 103 string, 56
read-char, 103 string>0, 57
read-float, 103 string>?, 57
read-int, 103 string>-?, 57
read-sexp, 104 string<-?, 57
read-string, 103 string->list, 69
read-symbol, 103 string->symbol, 61
Record, 78, 79 string-append, 58
record-set!,83 string-ci>0,57
recordof, 77, 78 string-c i>?, 57
Recursive types, 5 sig-ci>-?, 57
reduce, 69 string-ci<-?, 57
ref, 22, 47, 61 string-ci-?, 57
Referential Transparency, 16 string-copy, 58
Region, 12, 13 string-fill!, 57

constants, 14 string-length, 56
constructors, 14 string-ret, 57
examnples of, 2 string-setl,57
mneta-notation, 14 string-?, 57

remainder, 52 subr, 20
Reserved identifiers, xiii Subroutine
Rest arguments, 70 application, 36
reverse, 67 syntactic, 37
round, 54 substring, 58

4runion, 14, 15, 26 substring-f ill!, 57
Subtype, 27

Scheme, ix, 11, 68, 73, 102 Supertype, 27'U ~ ~~select, 80 smo,5

setl,4,62 ymbol->string, 61
1* 1set-c, 4656 symbol.?, 61

set-cr!, 5, ~Symbolic Expression, 104

set-d,1 5,6 Syntactic subroutine, 37
sep Syntactic sugar, 89

~w Side-effect, 19
Simple effect, 16 tab, 54
sin, 54 tagcase, 85
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Tail recursion, 37 write-char, 103
Tail recursive, 37 write-float, 103
tan, 54 write-jut, 103
the, 33 write-sexp, 104

token, xii write-string, 103
Top-level, 105 write-symbol, 103
truncate, 54
Type, 12, 19

constants, 19
constructors, 19
examples of, 2
meta-notation, 19

unique, 63
uniqueof, 62
unit, 19, 50

Value, 63
constants, 31
expression, 11, 30

Value expression, 29-47
Variable, 30, 31

description, 13
free, 31
ordinary, 31

Variable-length Application, 72
vector, 76
vector->list, 77
vector-filll, 76

4 vector-length, 76
vector-ref, 76

vector-set!, 76I

vsubr, 67, 70

with-input-from-file, 102

with-output-to-file, 102I
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